①當(dāng)時(shí).由上可知成立, 查看更多

 

題目列表(包括答案和解析)

已知,設(shè)是方程的兩個(gè)根,不等式對(duì)任意實(shí)數(shù)恒成立;函數(shù)有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實(shí)數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>

(本小題滿分14分)

已知函數(shù)對(duì)于任意),都有式子成立(其中為常數(shù)).

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)利用函數(shù)構(gòu)造一個(gè)數(shù)列,方法如下:

對(duì)于給定的定義域中的,令,,…,,…

在上述構(gòu)造過(guò)程中,如果=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;如果不在定義域中,那么構(gòu)造數(shù)列的過(guò)程就停止.

(。┤绻梢杂蒙鲜龇椒(gòu)造出一個(gè)常數(shù)列,求的取值范圍;

(ⅱ)是否存在一個(gè)實(shí)數(shù),使得取定義域中的任一值作為,都可用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;

(ⅲ)當(dāng)時(shí),若,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

(本小題滿分14分)
已知函數(shù)對(duì)于任意),都有式子成立(其中為常數(shù)).
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)利用函數(shù)構(gòu)造一個(gè)數(shù)列,方法如下:
對(duì)于給定的定義域中的,令,,…,,…
在上述構(gòu)造過(guò)程中,如果=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;如果不在定義域中,那么構(gòu)造數(shù)列的過(guò)程就停止.
(ⅰ)如果可以用上述方法構(gòu)造出一個(gè)常數(shù)列,求的取值范圍;
(ⅱ)是否存在一個(gè)實(shí)數(shù),使得取定義域中的任一值作為,都可用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;
(ⅲ)當(dāng)時(shí),若,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

已知函數(shù)y=f(x)對(duì)于任意(k∈Z),都有式子f(a-tanθ)=cotθ-1成立(其中a為常數(shù)).

(Ⅰ)求函數(shù)y=f(x)的解析式;

(Ⅱ)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列,方法如下:

對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述構(gòu)造過(guò)程中,如果xi(i=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;如果xi不在定義域中,那么構(gòu)造數(shù)列的過(guò)程就停止.

(ⅰ)如果可以用上述方法構(gòu)造出一個(gè)常數(shù)列,求a的取值范圍;

(ⅱ)是否存在一個(gè)實(shí)數(shù)a,使得取定義域中的任一值作為x1,都可用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn}?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由;

(ⅲ)當(dāng)a=1時(shí),若x1=-1,求數(shù)列{xn}的通項(xiàng)公式.

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若對(duì)任意,不等式 恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問(wèn)利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

第二問(wèn)中,若對(duì)任意不等式恒成立,問(wèn)題等價(jià)于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

(II)若對(duì)任意不等式恒成立,

問(wèn)題等價(jià)于,                   .........5分

由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),

故也是最小值點(diǎn),所以;            ............6分

當(dāng)b<1時(shí),;

當(dāng)時(shí),;

當(dāng)b>2時(shí),;             ............8分

問(wèn)題等價(jià)于 ........11分

解得b<1 或 或    即,所以實(shí)數(shù)b的取值范圍是 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案