解: (I)由題意得: 所以橢圓的方程為 4分 查看更多

 

題目列表(包括答案和解析)

若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

【解析】第一問中,利用定義,判定由題意得,由,所以

第二問中, 由題意得方程有兩實根

設(shè)所以關(guān)于m的方程有兩實根,

即函數(shù)與函數(shù)的圖像在上有兩個不同交點,從而得到t的范圍。

解(I)由題意得,由,所以     (6分)

(II)由題意得方程有兩實根

設(shè)所以關(guān)于m的方程有兩實根,

即函數(shù)與函數(shù)的圖像在上有兩個不同交點。

 

查看答案和解析>>

已知函數(shù)f(x)=sin(ωx+φ) (0<φ<π,ω>0)過點,函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為.

(1) 求f(x)的解析式;

(2) f(x)的圖象向右平移個單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)遞減區(qū)間.

【解析】本試題主要考查了三角函數(shù)的圖像和性質(zhì)的運用,第一問中利用函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為.得,所以

第二問中,,

   可以得到單調(diào)區(qū)間。

解:(Ⅰ)由題意得,,…………………1分

代入點,得…………1分

,    ∴

(Ⅱ)   的單調(diào)遞減區(qū)間為,.

 

查看答案和解析>>

△ABC中,D在邊BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的長及△ABC的面積。

【解析】本試題主要考查了余弦定理的運用。利用由題意得,

并且得到結(jié)論。

解:(Ⅰ)由題意得,………1分…………1分

(Ⅱ)………………1分

   

 

查看答案和解析>>

已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

【解析】第一問利用設(shè)橢圓的方程為,由題意得

解得

第二問若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標分別為,

所以

所以.解得。

解:⑴設(shè)橢圓的方程為,由題意得

解得,故橢圓的方程為.……………………4分

⑵若存在直線滿足條件的方程為,代入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標分別為,

所以

所以

,

因為,即

所以

所以,解得

因為A,B為不同的兩點,所以k=1/2.

于是存在直線L1滿足條件,其方程為y=1/2x

 

查看答案和解析>>

設(shè)函數(shù)f(x)=lnx,gx)=ax+,函數(shù)f(x)的圖像與x軸的交點也在函數(shù)g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學?。網(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學,科,網(wǎng)Z,X,X,K]

【解析】第一問解:因為f(x)=lnx,gx)=ax+

則其導數(shù)為

由題意得,

第二問,由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

解:因為f(x)=lnx,gx)=ax+

則其導數(shù)為

由題意得,

(11)由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當時,,有;當時,,有;當x=1時,,有

 

查看答案和解析>>


同步練習冊答案