設(shè)函數(shù). 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)(a、b、c是兩兩不等的常數(shù)),則
a
f′(a)
+
b
f′(b)
+
c
f′(c)
=
 

查看答案和解析>>

設(shè)函數(shù)f(x)=cos(2x+
π
3
)+sin2x.
(1)求函數(shù)f(x)的最大值和最小正周期.
(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若cosB=
1
3
,f(
C
3
)=-
1
4
,且C為非鈍角,求sinA.

查看答案和解析>>

設(shè)函數(shù)f(x)=
ax2+bx+c
(a<0)
的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為( 。
A、-2B、-4
C、-8D、不能確定

查看答案和解析>>

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱(chēng)軸是直線x=
π
8

(1)求φ;
(2)若函數(shù)y=2f(x)+a,(a為常數(shù)a∈R)在x∈[
11π
24
,
4
]
上的最大值和最小值之和為1,求a的值.

查看答案和解析>>

設(shè)函數(shù)f(x)=
x-3,x≥10
f(x+5),x<10
,則f(5)=
 

查看答案和解析>>

 

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

D

A

D

C

A

B

A

D

B

 

二、填空題

13.3    14.1   15.36π    16.

三、解答題

17.解:(1)

=………………………….2分

=.………………………………………4分

    20090327

    (2)要使函數(shù)為偶函數(shù),只需

    …………………………………………….8分

    因?yàn)?sub>,

    所以.…………………………………………………………10分

    18.(1)由題意知隨機(jī)變量ξ的取值為2,3,4,5,6.

    ,,…………….2分

     , ,

    .…………………………. …………4分

    所以隨機(jī)變量ξ的分布列為

    2

    3

    4

    5

    6

    P

    …………………………………………6分

    (2)隨機(jī)變量ξ的期望為

    …………………………12分

    19.解:(1)過(guò)點(diǎn)作,由正三棱柱性質(zhì)知平面,

    連接,則在平面上的射影.

    ,…………………………2分

    中點(diǎn),又,

    所以的中點(diǎn).

    過(guò),

    連結(jié),則,

    *為二面角

    的平面角.…4分

    中,

    =,

    .

    所以二面角的正切值為..…6分

    (2)中點(diǎn),

    到平面距離等于到平面距離的2倍,

    又由(I)知平面,

    平面平面,

    過(guò),則平面,

    .

    故所求點(diǎn)到平面距離為.…………………………12分

    20.解:(1)函數(shù)的定義域?yàn)?sub>,因?yàn)?/p>

    所以 當(dāng)時(shí),;當(dāng)時(shí),.

    的單調(diào)遞增區(qū)間是;的單調(diào)遞減區(qū)間是.………6分

    (注: -1處寫(xiě)成“閉的”亦可)

    (2)由得:,

    ,則,

    所以時(shí),,時(shí),,

    上遞減,在上遞增,…………………………10分

    要使方程在區(qū)間上只有一個(gè)實(shí)數(shù)根,則必須且只需

    解之得

    所以實(shí)數(shù)的取值范圍.……………………12分

    21.解:(1)設(shè),

    因?yàn)閽佄锞的焦點(diǎn),

    .……………………………1分

    ,…2分

    ,

    而點(diǎn)A在拋物線上,

    .……………………………………4分

    ………………………………6分

    (2)由,得,顯然直線,的斜率都存在且都不為0.

    設(shè)的方程為,則的方程為.

        由 ,同理可得.………8分

     

    =.(當(dāng)且僅當(dāng)時(shí)取等號(hào))

    所以的最小值是8.…………………………………………………………12分

    22.解:(1),由數(shù)列的遞推公式得

    ,,.……………………………………………………3分

    (2)

    =

    ==.……………………5分

    數(shù)列為公差是的等差數(shù)列.

    由題意,令,得.……………………7分

    (3)由(2)知

    所以.……………………8分

    此時(shí)=

    =,……………………10分

    *

    *

     =

    >.……………………12分

     


    同步練習(xí)冊(cè)答案