題目列表(包括答案和解析)
b |
a |
c |
a |
已知過點的動直線與拋物線相交于兩點.當(dāng)直線的斜率是時,.
(1)求拋物線的方程;
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.
【解析】(1)B,C,當(dāng)直線的斜率是時,
的方程為,即 (1’)
聯(lián)立 得, (3’)
由已知 , (4’)
由韋達定理可得G方程為 (5’)
(2)設(shè):,BC中點坐標為 (6’)
得 由得 (8’)
BC中垂線為 (10’)
(11’)
橢圓的左、右焦點分別為,一條直線經(jīng)過點與橢圓交于兩點.
⑴求的周長;
⑵若的傾斜角為,求的面積.
【解析】(1)根據(jù)橢圓的定義的周長等于4a.
(2)設(shè),則,然后直線l的方程與橢圓方程聯(lián)立,消去x,利用韋達定理可求出所求三角形的面積.
過拋物線的對稱軸上的定點,作直線與拋物線相交于兩點.
(I)試證明兩點的縱坐標之積為定值;
(II)若點是定直線上的任一點,試探索三條直線的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達定理得
(2)中:因為三條直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com