題目列表(包括答案和解析)
π | 2 |
(本題滿分12分) 已知函數(shù).
(Ⅰ) 求f 1(x);
(Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;
(Ⅲ) 設(shè)bn=(32n-8),求數(shù)列{bn}的前項(xiàng)和Tn
(本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線的距離為,若x=時(shí),y=f(x)有極值.
(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m
(2)求y=f(x)在[-3,1]上的最大值和最小值.
(本題滿分12分) 已知數(shù)列{an}滿足
(Ⅰ)求數(shù)列的前三項(xiàng):a1,a2,a3;
(Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m
(Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn.
(本題滿分12分) 已知函數(shù)
(Ⅰ)當(dāng)的 單調(diào)區(qū)間;
(Ⅱ)當(dāng)的取值范圍。一、選擇題
C B B A B A A A DD C C
二、填空題
13. 14. ―4 15. 2880 16.①③
17.解,由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為 ….3分
①當(dāng)n=3時(shí),的概率為 …6分
②時(shí),有或
它的概率為 ….12分
18.解: (1)解:在中
2分
4分
6分
(2)=
12分
19. (法一)(1)證明:取中點(diǎn),連接、.
∵△是等邊三角形,∴⊥,
又平面⊥平面,
∴⊥平面,∴在平面內(nèi)射影是,
∵=2,,,,
∴△∽△,∴.
又°,∴°,
∴°,∴⊥,
由三垂線定理知⊥ ……….(6分)
(2)取AP的中點(diǎn)E及PD的中點(diǎn)F,連ME、CF則CFEM為平行四邊形,CF平面PAD所以ME平面PAD,所以平面MPA平面PAD所以二面角M―PA―D為900.(12分)
20.解:(1)
2分
-1
(x)
-
0
+
0
-
(x)
減
極小值0
增
極大值
減
6分
(2)
8分
12分
21.Ⅰ)由題知點(diǎn)的坐標(biāo)分別為,,
于是直線的斜率為,
所以直線的方程為,即為.…………………4分
(Ⅱ)設(shè)兩點(diǎn)的坐標(biāo)分別為,
由得,
所以,.
于是.
點(diǎn)到直線的距離,
所以.
因?yàn)?sub>且,于是,
所以的面積范圍是. …………………………………8分
(Ⅲ)由(Ⅱ)及,,得
,,
于是,().
所以.
所以為定值. ……………………………………………12分
22.解(Ⅰ)由得,
數(shù)列{an}的通項(xiàng)公式為 4分
(Ⅱ)
設(shè) ①
②
①―②得
=
即數(shù)列的前n項(xiàng)和為 9分
(Ⅲ)解法1:不等式恒成立,
即對于一切的恒成立
設(shè),當(dāng)k>4時(shí),由于對稱軸,且而函數(shù)在是增函數(shù),不等式恒成立
即當(dāng)k<4時(shí),不等式對于一切的恒成立 14分
解法2:bn=n(2n-1),不等式恒成立,即對于一切恒成立
而k>4
恒成立,故當(dāng)k>4時(shí),不等式對于一切的恒成立 (14分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com