[解](Ⅰ)設(shè)雙曲線方程為.由已知∠AF1F2=30°.∠A F2F1=90°. 查看更多

 

題目列表(包括答案和解析)

,為常數(shù),離心率為的雙曲線上的動點到兩焦點的距離之和的最小值為,拋物線的焦點與雙曲線的一頂點重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負(fù)常數(shù))上任意一點向拋物線引兩條切線,切點分別為、,坐標(biāo)原點恒在以為直徑的圓內(nèi),求實數(shù)的取值范圍。

【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

第二問中,,,

故直線的方程為,即,

所以,同理可得:

借助于根與系數(shù)的關(guān)系得到即是方程的兩個不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

(Ⅱ)設(shè),,

故直線的方程為,即

所以,同理可得:,

,是方程的兩個不同的根,所以

由已知易得,即

 

查看答案和解析>>


同步練習(xí)冊答案