題目列表(包括答案和解析)
OC |
CD |
DO |
KE |
KF |
OP |
OE |
OF |
如圖,在直角坐標系中,O為坐標原點,直線⊥x軸于點C, ,,動點到直線的距離是它到點D的距離的2倍
(I)求點的軌跡方程;
(II)設點K為點的軌跡與x軸正半軸的交點,直線交點的軌跡于兩點(與點K均不重合),且滿足 求直線EF在X軸上的截距;
(Ⅲ)在(II)的條件下,動點滿足,求直線的斜率的取值范圍
如圖,在直角坐標系中,O為坐標原點,直線⊥x軸與點C, ,,動點到直線的距離是它到點D的距離的2倍。
(I)求點的軌跡方程
(II)設點K為點的軌跡與x軸正半軸的交點,直線交點的軌跡于兩點(與點K不重合),且滿足.動點滿足,求直線的斜率的取值范圍.
一、1 B 2 D 3 A 4 D 5 C 6 B
7 A 8 A 9 C 10 D 11 C 12 B
二、13、3 14、 15、-160 16、
三、17、解: (1) ……… 3分
的最小正周期為 ………………… 5分
(2) , ………………… 7分
………………… 10分
………………… 11分
當時,函數(shù)的最大值為1,最小值 ……… 12分
18.解:(1)P1=; ……… 6分
(2)方法一:P2=
方法二:P2=
方法三:P2=1- ……… 12分
19、解法一:
(Ⅰ)連結C交BC于O,則O是B C的中點,連結DO。
∵在△AC中,O、D均為中點,
∴A∥DO…………………………2分
∵A平面BD,DO平面BD,
∴A∥平面BD。…………………4分
(Ⅱ)設正三棱柱底面邊長為2,則DC = 1。
∵∠DC = 60°,∴C= 。
作DE⊥BC于E。
∵平面BC⊥平面ABC,
∴DE⊥平面BC
作EF⊥B于F,連結DF,則 DF⊥B
∴∠DFE是二面角D-B-C的平面角………………8分
在Rt△DEC中,DE=
在Rt△BFE中,EF = BE?sin
∴在Rt△DEF中,tan∠DFE =
∴二面角D-B-C的大小為arctan………………12分
解法二:以AC的中D為原點建立坐標系,如圖,
設| AD | = 1∵∠DC =60°∴| C| = 。
則A(1,0,0),B(0,,0),C(-1,0,0),
(1,0), ,
(Ⅰ)連結C交B于O是C的中點,連結DO,則
O. =
∵A平面BD,
∴A∥平面BD.………………………………………………4分
(Ⅱ)=(-1,0,),
設平面BD的法向量為n = ( x , y , z ),則
即 則有= 0令z = 1
則n = (,0,1) …………………………………8分
設平面BC的法向量為m = ( x′ ,y′,z′)
|