題目列表(包括答案和解析)
橢圓的方程為,離心率為,且短軸一端點和兩焦點構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.
設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線與能否垂直?若能,求之間滿足的關(guān)系式;若不能,說明理由;
(2)已知為的中點,且點在橢圓上.若,求之間滿足的關(guān)系式.
設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線與能否垂直?若能,之間滿足什么關(guān)系;若不能,說明理由;
(2)已知為的中點,且點在橢圓上.若,求橢圓的離心率.
一、選擇題:1-5 BABAC 6-10 DAACC
二、填空題:11.625 12. 13.
14. 15.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16.(本小題滿分12分)
解:(1)由題意知
的夾角
(2)
有最小值
的最小值是
17.(本小題滿分12分)
(1)證法一:在中,是等腰直角的中位線,
在四棱錐中,,, 平面,
又平面,
證法二:同證法一 平面,
又平面,
(2)在直角梯形中,,
又垂直平分,
∴
三棱錐的體積為
18.(本小題滿分14分)
解:,
因為函數(shù)在處的切線斜率為-3,
所以,即
又得
(1)函數(shù)在時有極值,所以
解得
所以.
(2)因為函數(shù)在區(qū)間上單調(diào)遞增,所以導(dǎo)函數(shù)
在區(qū)間上的值恒大于或等于零
則得,所以實數(shù)的取值范圍為
19.(本小題滿分14分)
解:(1)由題設(shè)知
由于,則有,所以點的坐標(biāo)為
故所在直線方程為
所以坐標(biāo)原點到直線的距離為
又,所以 解得:
所求橢圓的方程為
(2)由題意可知直線的斜率存在,設(shè)直線斜率為
直線的方程為,則有
設(shè),由于、、三點共線,且
根據(jù)題意得,解得或
又在橢圓上,故或
解得,綜上,直線的斜率為或
20.(本小題滿分14分)
解: 在實施規(guī)劃前, 由題設(shè)(萬元),
知每年只須投入40萬, 即可獲得最大利潤100萬元.
則10年的總利潤為W1=100×10=1000(萬元).
實施規(guī)劃后的前5年中, 由題設(shè)知,
每年投入30萬元時, 有最大利潤(萬元).
所以前5年的利潤和為(萬元).
設(shè)在公路通車的后5年中, 每年用x萬元投資于本地的銷售, 而用剩下的(60-x)萬元于外地區(qū)的銷售投資, 則其總利潤為:
.
當(dāng)x=30時,W2|max=4950(萬元).
從而 , 該規(guī)劃方案有極大實施價值.
21.(本小題滿分14分)
解:(1)設(shè)
,又
(2)由已知得
兩式相減得,
當(dāng).若
(3)由,
.
若
可知,.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com