求證:“若直線過點T(3.0).則=3 是真命題. 查看更多

 

題目列表(包括答案和解析)

已知定點F1(-
3
,0),F(xiàn)2
3
,0),動點R在曲線C上運動且保持|RF1|+|RF2|的值不變,曲線C過點T(0,1),
(Ⅰ)求曲線C的方程;
(Ⅱ)M是曲線C上一點,過點M作斜率分別為k1和k2的直線MA,MB交曲線C于A、B兩點,若A、B關(guān)于原點對稱,求k1•k2的值;
(Ⅲ)直線l過點F2,且與曲線C交于PQ,有如下命題p:“當(dāng)直線l垂直于x軸時,△F1PQ的面積取得最大值”.判斷命題p的真假.若是真命題,請給予證明;若是假命題,請說明理由.

查看答案和解析>>

精英家教網(wǎng)本題有(1),(2),(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑.
(1)選修4-2:矩陣與變換
如圖所示:△OAB在伸縮變換M作用下變?yōu)椤鱋A1B1
(i)求矩陣M的特征值及相應(yīng)的特征向量;
(ii)求逆矩陣M-1以及(M-120
(2)選修4-4:坐標(biāo)系與參數(shù)方程.
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
(θ為參數(shù)),曲線C2的參數(shù)方程為
x=2t
y=t+1
(t為參數(shù))
(i)若將曲線C1與C2上各點的橫坐標(biāo)都縮短為原來的一半,分別得到曲線C1和C2,求出曲線C1和C2的普通方程;
(ii)以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點且與C2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求證:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求實數(shù)m的取值范圍.

查看答案和解析>>

動點M的坐標(biāo)(x,y)在其運動過程中總滿足關(guān)系式
(x-
5
)
2
+y2
+
(x+
5
)
2
+y2
=6

(1)點M的軌跡是什么曲線?請寫出它的標(biāo)準(zhǔn)方程;
(2)已知定點T(t,0)(0<t<3),若|MT|的最小值為1,求t的值;
(3)設(shè)直線l不經(jīng)過原點O,與動點M的軌跡相交于A,B兩點,點G為線段AB的中點,直線OG與該軌跡相交于C,D兩點,若直線AB,CD,AC,AD,DB,BC的斜率分別為k1,k2,k3,k4,k5,k6,求證:k1•k2=k3•k4=k5•k6

查看答案和解析>>

已知橢圓C:,直線恒過的定點F為橢圓的一個焦點,且橢圓上的點到焦點F的最大距離為3,

(1)求橢圓C的方程;

(2)若直線MN為垂直于x軸的動弦,且M、N均在橢圓C上,定點T(4,0),直線MF與直線NT交于點S

①求證:點S恒在橢圓C上;

②求△MST面積的最大值。

查看答案和解析>>

已知橢圓C:,直線(m+3)x+(1-2m)y-m-3=0(m∈R)恒過的定點F為橢圓的一個焦點,且橢圓上的點到焦點F的最大距離為3,
(1)求橢圓C的方程;
(2)若直線MN為垂直于x軸的動弦,且M、N均在橢圓C上,定點T(4,0),直線MF與直線NT交于點S.求證:
①點S恒在橢圓C上;
②求△MST面積的最大值.

查看答案和解析>>

一、選擇題:

CADCB  AABBD  CD

二、填空題

(13);  (14)8;   (15);  (16)3.

三、解答題

(17)解:將圓C的方程配方得標(biāo)準(zhǔn)方程為,

則此圓的圓心為(0 , 4),半徑為2.

(Ⅰ) 若直線與圓C相切,則有. 解得.  ………………6分

(Ⅱ) 解:過圓心C作CD⊥AB,則根據(jù)題意和圓的性質(zhì),得

 解得.

∴直線的方程是.  ………………12分

(18)解:(Ⅰ)由題意知此平面區(qū)域表示的是以構(gòu)成的三角形及其內(nèi)部,且△是直角三角形, 所以覆蓋它的且面積最小的圓是其外接圓,故圓心是(2,1),半徑是,

所以圓的方程是.    ………………6分

 (Ⅱ)設(shè)直線的方程是:.

  因為,所以圓心到直線的距離是, 即.

解得:.                          ………………………………11分

所以直線的方程是. ………………12分

(19)解:設(shè)過點T(3,0)的直線交拋物線于點A、B .

(Ⅰ)當(dāng)直線的鈄率不存在時,直線的方程為,

此時, 直線與拋物線相交于點A(3,)().B(3,-),∴=3.   …….............4分

(Ⅱ)當(dāng)直線的鈄率存在時,設(shè)直線的方程為,

其中,由.     …………………….….6分

又 ∵ , ∴,

                                                    ………………………………….10分

綜上所述,命題“若直線過點T(3,0),則=3” 是真命題.  ………………….12分

(20)解:(Ⅰ)由的中點,

設(shè)A、B兩點的坐標(biāo)分別為

.

,

點的坐標(biāo)為.               …………………………4分

  又點在直線上,  .

,       ………………6分

   (Ⅱ)由(Ⅰ)知,不妨設(shè)橢圓的一個焦點坐標(biāo)為,

設(shè)關(guān)于直線上的對稱點為,

則有.         ………………10分

由已知.

,∴所求的橢圓的方程為 .     ………………12分

(21)解:(Ⅰ)由已知條件,直線的方程為

代入橢圓方程得

整理得  、    ……………………………………3分

直線與橢圓有兩個不同的交點等價于,

解得.即的取值范圍為.………………6分

 

(Ⅱ)設(shè),則,

由方程①,.  、

. 、      …………………………………9分

所以共線等價于,

將②③代入上式,解得

由(Ⅰ)知,故沒有符合題意的常數(shù).………………12分

 

 

(22)解:(Ⅰ)設(shè)點,則,由得:

,化簡得.……4分

(Ⅱ)(1)設(shè)直線的方程為:

設(shè),,又

聯(lián)立方程組,消去得:,,

              ……………………………………………7

,得:

,,整理得:,,

.……10分

(2)解:

當(dāng)且僅當(dāng),即時等號成立,所以最小值為.   ……14分

 

 

 


同步練習(xí)冊答案