資陽(yáng)市2008―2009學(xué)年度高中三年級(jí)第二次高考模擬考試 查看更多

 

題目列表(包括答案和解析)

資陽(yáng)市某中學(xué)為了解高中學(xué)生學(xué)習(xí)心理承受壓力情況,在高中三個(gè)年級(jí)分別抽取部分學(xué)生進(jìn)行調(diào)查,采用的最佳抽樣方法是(  )

查看答案和解析>>

(溫州十校2009學(xué)年度第一學(xué)期期中高三數(shù)學(xué)試題理).已知數(shù)列的前n項(xiàng)的和滿(mǎn)足,則=         .

查看答案和解析>>

(寧波市2009學(xué)年度第一學(xué)期期末試卷10).如圖,一只青蛙在圓周上標(biāo)有數(shù)字的五個(gè)點(diǎn)上跳,若它停在奇數(shù)點(diǎn)上,則下一次沿順時(shí)針?lè)较蛱鴥蓚(gè)點(diǎn);若停在偶數(shù)點(diǎn)上,則下一次沿逆時(shí)針?lè)较蛱粋(gè)點(diǎn),若青蛙從這點(diǎn)開(kāi)始跳,則經(jīng)2009次跳后它停在的點(diǎn)所對(duì)應(yīng)的數(shù)為(     )

A.          B.         C.        D. 

查看答案和解析>>

(2012•商丘三模)某高中三年級(jí)有一個(gè)實(shí)驗(yàn)班和一個(gè)對(duì)比班,各有50名同學(xué).根據(jù)這兩個(gè)班市二模考    試的數(shù)學(xué)科目成績(jī)(規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀),統(tǒng)計(jì)結(jié)果如下:
實(shí)驗(yàn)班數(shù)學(xué)成績(jī)的頻數(shù)分布表:
分組 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140.150]
頻數(shù) 1 2 12 13 12 9 1 0
對(duì)比班數(shù)學(xué)成績(jī)的頻數(shù)分布表:
分組 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140.150]
頻數(shù) 2 3 13 11 9 10 1 1
(Ⅰ)分別求這兩個(gè)班數(shù)學(xué)成績(jī)的優(yōu)秀率;若采用分層抽樣從實(shí)驗(yàn)班中抽取15位同學(xué)的數(shù)學(xué)試卷,進(jìn)行試卷分析,則從該班數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的試卷中應(yīng)抽取多少份?
(Ⅱ)統(tǒng)計(jì)學(xué)中常用M值作為衡量總體水平的一種指標(biāo),已知M與分?jǐn)?shù)t的關(guān)系式為:M=
-2(t<90)
2(90≤t<120)
4(t≥120).
,分別求這兩個(gè)班學(xué)生數(shù)學(xué)成績(jī)的M總值,并據(jù)此對(duì)這兩個(gè)班數(shù)學(xué)成績(jī)總體水平作一簡(jiǎn)單評(píng)價(jià).

查看答案和解析>>

(2013•資陽(yáng)二模)如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E分別為A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且AF=
14
AB

(Ⅰ)求證:EF∥平面BDC1;
(Ⅱ)在棱AC上是否存在一個(gè)點(diǎn)G,使得平面EFG將三棱柱分割成的兩部分體積之比為1:15,若存在,指出點(diǎn)G的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答題:本大題共6個(gè)小題,共74分.解答要寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

 

17.解:(Ⅰ)∵l1∥l2,

,????????????????????????? 3分

,

.??????????????????????? 6分

(Ⅱ)∵,

,∴,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ??? 8分

,∴,???????????? 10分

,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ

故△ABC面積取最大值為.?????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三個(gè)球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率;??????????? 1分

②三次取球中有2次出現(xiàn)最大數(shù)字3的概率;????? 3分

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率.????? 5分

∴P(ξ=3)=P1+P2+P3=.??????????????????????? 6分

(Ⅱ)在ξ=k時(shí), 利用(Ⅰ)的原理可知:

(k=1、2、3、4).?? 8分

則ξ的概率分布列為:

ξ

1

2

3

4

P

??????????????????????????????????? 10分

∴ξ的數(shù)學(xué)期望Eξ=1×+2×+3×+4× = .????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點(diǎn),連接BO,則BO⊥AA1 2分

∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點(diǎn),建立如圖空間直角坐標(biāo)系,則,,,,.則,,.??????????????????????????? 5分

設(shè)是平面ABC的一個(gè)法向量,

,則.設(shè)A1到平面ABC的距離為d.

.????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個(gè)法向量是,又平面ACC1的一個(gè)法向量.    9分

.????????????????? 11分

∴二面角B-AC-C1的余弦值是.??????????????????? 12分

 

20.解:(Ⅰ),對(duì)稱(chēng)軸方程為,故函數(shù)在[0,1]上為增函數(shù),∴.???????????????????????? 2分

當(dāng)時(shí),.?????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????? 4分

,∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.

,∴.?????????????? 6分

(Ⅱ)∵,∴

???????????????? 7分

可知:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),

????????????????????? 10分

可知存在正整數(shù)或6,使得對(duì)于任意的正整數(shù)n,都有成立.??? 12分

 

21.解:(Ⅰ)設(shè),,,

,,

,,

.∵,

,∴,∴.?????????????????? 2分

則N(c,0),M(0,c),所以

,則

∴橢圓的方程為.?????????????????????? 4分

(Ⅱ)∵圓O與直線(xiàn)l相切,則,即,????????? 5分

消去y得

∵直線(xiàn)l與橢圓交于兩個(gè)不同點(diǎn),設(shè)

,

,,?????????????????? 7分

,.????? 8分

.??????????? 9分

(或).

設(shè),則,

,則

時(shí)單調(diào)遞增,????????????????????? 11分

∴S關(guān)于μ在區(qū)間單調(diào)遞增,,

.???????????????????????????? 12分

(或,

∴S關(guān)于u在區(qū)間單調(diào)遞增,???????????????????? 11分

,,.)???????????????? 12分

 

22.解:(Ⅰ)因?yàn)?sub>,,則,   1分

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞增;在上單調(diào)遞減,

∴函數(shù)處取得極大值.???????????????????? 2分

∵函數(shù)在區(qū)間(其中)上存在極值,

解得.??????????????????????? 3分

(Ⅱ)不等式,即為,???????????? 4分

,∴,?? 5分

,則,∵,∴上遞增,

,從而,故上也單調(diào)遞增,

,

.??????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??? 8分

,??????????????? 9分

,

,

………

,??????????????????????? 10分

疊加得:

.???????????????????? 12分

,

.???????????????????? 14


同步練習(xí)冊(cè)答案