題目列表(包括答案和解析)
已知數(shù)列中,,,數(shù)列中,,且點(diǎn)在直線上。
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)若,求數(shù)列的前項(xiàng)和;
【解析】第一問中利用數(shù)列的遞推關(guān)系式
,因此得到數(shù)列的通項(xiàng)公式;
第二問中,在 即為:
即數(shù)列是以的等差數(shù)列
得到其前n項(xiàng)和。
第三問中, 又
,利用錯(cuò)位相減法得到。
解:(1)
即數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列
……4分
(2)在 即為:
即數(shù)列是以的等差數(shù)列
……8分
(3) 又
① ②
①- ②得到
已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:,
(1)求數(shù)列的通項(xiàng)和前n項(xiàng)和;
(2)求數(shù)列的前n項(xiàng)和;
(3)證明:不等式 對(duì)任意的,都成立.
【解析】第一問中,由于所以
兩式作差,然后得到
從而得到結(jié)論
第二問中,利用裂項(xiàng)求和的思想得到結(jié)論。
第三問中,
又
結(jié)合放縮法得到。
解:(1)∵ ∴
∴
∴ ∴ ………2分
又∵正項(xiàng)數(shù)列,∴ ∴
又n=1時(shí),
∴ ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 對(duì)任意的,都成立.
在△ABC中,已知b,a,c成等差數(shù)列,b,a,c成等比數(shù)列.
(1)求證:△ABC是正三角形;
(2)如圖(1),若△ABC為第一個(gè)三角形,分別連結(jié)△ABC三邊的中點(diǎn),將△ABC剖分成4個(gè)三角形(如圖(2)),再分別連結(jié)圖(2)中間的一個(gè)小三角形三邊的中點(diǎn),又可將△ABC剖分成7個(gè)三角形(如圖(3)).依此類推,第n個(gè)圖中△ABC被剖分為an個(gè)三角形,求an.
解:
. (本小題滿分12分)設(shè)函數(shù)(為常數(shù),),若,且只有一個(gè)實(shí)數(shù)根.(Ⅰ)求的解析式;(Ⅱ)若數(shù)列滿足關(guān)系式:(且),又,證明數(shù)列是等差數(shù)列并求的通項(xiàng)公式;
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com