題目列表(包括答案和解析)
若存在x0∈R,使f(x0)=x0成立,則稱點(x0,x0)為函數(shù)f(x)的不動點.
(Ⅰ)已知函數(shù)f(x)=ax2+bx-b(a≠0)有不動點(1,1)和(-3,-3),求a、b的值;
(Ⅱ)若對于任意實數(shù)b,函數(shù)f(x)=ax2+bx-b總有兩個相異的不動點,求實數(shù)a的取值范圍;
(Ⅲ)若定義在實數(shù)集R上的奇函數(shù)g(x)存在(有限的)n個不動點,求證:n必為奇數(shù).
對于函數(shù),若存在 ,使成立,則稱點為函數(shù)的不動點。
(1)已知函數(shù)有不動點(1,1)和(-3,-3)求與的值;
(2)若對于任意實數(shù),函數(shù)總有兩個相異的不動點,求 的取值范圍;
(3)若定義在實數(shù)集R上的奇函數(shù)存在(有限的) 個不動點,求證:必為奇數(shù)。
對于非空實數(shù)集,記.設(shè)非空實數(shù)集合,若時,則. 現(xiàn)給出以下命題:
①對于任意給定符合題設(shè)條件的集合,必有;
②對于任意給定符合題設(shè)條件的集合,必有;
③對于任意給定符合題設(shè)條件的集合,必有;
④對于任意給定符合題設(shè)條件的集合,必存在常數(shù),使得對任意的,恒有,
其中正確的命題是 .(寫出所有正確命題的序號)
一、選擇題 ACCBC BBCCD
二、填空題:,,,,,,①②④
18(Ⅰ)由題意“且”表示“答完題,第一題答對,第二題答錯;或第一題答對,第二題也答對” 此時概率 …6分
(Ⅱ)P()==, P()==,………9分
-3
-1
1
3
P()== , P()==
∴的分布列為
12分
∴ ……14分
19解:(Ⅰ) 連接交于點,連接.
在中,分別為中點,.
平面,平面,平面. …………(6分)
(Ⅱ) 法一:過作于,由三垂線定理得,
故∠為二面角的平面角. ……………………………………(9分)
令,則,又,
在△中,,
解得。
當(dāng)時,二面角的正弦值為. ………………(14分)
法二:設(shè),取中點,連接,
以為坐標(biāo)原點建立空間直角坐標(biāo)系,如右圖所示:
則,
則.
設(shè)平面的法向量為,平面的法向量為,
則有,,即,,
設(shè),則,
,解得.
即當(dāng)時,二面角的正弦值為. …………………(14分)
20.(1) ;
(2)軌跡方程為()
(1)當(dāng)時,軌跡方程為(),表示拋物線弧段。
(2)當(dāng)時,軌跡方程為,
A)當(dāng)表示橢圓弧段; B)當(dāng)時表示雙曲線弧段。
21. Ⅰ) …………(2分)
令,則
當(dāng)時,;當(dāng)時
故有極大值…………(4分)
Ⅱ)∵=a+,x∈(0,e),∈[,+∞
(1)若a≥-,則≥0,從而f(x)在(0,e)上增函數(shù).
∴f(x)max =f(e)=ae+1≥0.不合題意. …………………………………7分
(2)若a<-, >
由a+<0,即-<x≤e.
∴f(x)=f(-)=-1+ln(-).
令-1+ln(-)=-3,則ln(-)=-2.∴-=e,
即a=-e2. ∵-e2<-,∴a=-e2為所求. ……………………………10分
Ⅲ)由Ⅰ)結(jié)論,=f(1)=-1.∴f(x)=-x+lnx≤-1,從而lnx≤x-1.
令g(x)=|f(x)|--=x-lnx--=x-(1+)lnx-……12分
(1)當(dāng)0<x<2時,有g(shù)(x)≥x-(1+)(x-1)-=->0.
(2)當(dāng)x≥2時,g′(x)=1-[(-)lnx+(1+)?]=
=.
∴g(x)在[2,+∞上增函數(shù),∴g(x)≥g(2)=
綜合(1)、(2)知,當(dāng)x>0時,g(x)>0,即|f(x)|>.
故原方程沒有實解. ………………………………16分
22.證明:(I)
①當(dāng), …………2分
②假設(shè),
則時不等式也成立, …………4分
(II)由,
由
…………5分
又 …………7分
…………8分
(III),
, …………10分
的等比數(shù)列,…………12分
…………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com