題目列表(包括答案和解析)
如圖所示的長方體中,底面
是邊長為
的正方形,
為
與
的交點(diǎn),
,
是線段
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求二面角的大。
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵
,
,
∴為平面
的法向量.∴利用法向量的夾角公式,
,
∴與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn)
、
,
∴,又點(diǎn)
,
,∴
∴,且
與
不共線,∴
.
又平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵,
∴,
,即
,
,
又,∴
平面
. ………8分
(Ⅲ)∵,
,∴
平面
,
∴為面
的法向量.∵
,
,
∴為平面
的法向量.∴
,
∴與
的夾角為
,即二面角
的大小為
如圖,在三棱錐中,平面
平面
,
,
,
,
為
中點(diǎn).(Ⅰ)求點(diǎn)B到平面
的距離;(Ⅱ)求二面角
的余弦值.
【解析】第一問中利用因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,為
中點(diǎn),所以
而平面平面
,所以
平面
,再由題設(shè)條件知道可以分別以
、
、
為
,
,
軸建立直角坐標(biāo)系得
,
,
,
,
,
,
故平面的法向量
而
,故點(diǎn)B到平面
的距離
第二問中,由已知得平面的法向量
,平面
的法向量
故二面角的余弦值等于
解:(Ⅰ)因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,為
中點(diǎn),所以
而平面平面
,所以
平面
,
再由題設(shè)條件知道可以分別以、
、
為
,
,
軸建立直角坐標(biāo)系,得
,
,
,
,
,
,故平面
的法向量
而,故點(diǎn)B到平面
的距離
(Ⅱ)由已知得平面的法向量
,平面
的法向量
故二面角的余弦值等于
如圖,已知向量,可構(gòu)成空間向量的一個(gè)基底,若
,在向量已有的運(yùn)算法則的基礎(chǔ)上,新定義一種運(yùn)算
,顯然
的結(jié)果仍為一向量,記作
.
1、求證:向量為平面
的法向量;
2、求證:以為邊的平行四邊形
的面積等于
;
將四邊形按向量
平移,得到一個(gè)平行六面體
,試判斷平行六面體的體積
與
的大。
如圖,已知向量,可構(gòu)成空間向量的一個(gè)基底,若
,在向量已有的運(yùn)算法則的基礎(chǔ)上,新定義一種運(yùn)算
,顯然
的結(jié)果仍為一向量,記作
.
求證:向量為平面
的法向量;
求證:以為邊的平行四邊形
的面積等于
;
將四邊形按向量
平移,得到一個(gè)平行六面體
,試判斷平行六面體的體積
與
的大小.
(理科)平面中,點(diǎn)
坐標(biāo)為
,點(diǎn)
坐標(biāo)為
,點(diǎn)
坐標(biāo)為
.若向量
,且
為平面
的法向量,則
= .
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com