∴. ∴c=5. --10分由余弦定理得b2=a2+c2-2accosB. 查看更多

 

題目列表(包括答案和解析)

中,,分別是角所對邊的長,,且

(1)求的面積;

(2)若,求角C.

【解析】第一問中,由又∵的面積為

第二問中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

又C為內(nèi)角      ∴

解:(1) ………………2分

   又∵                   ……………………4分

     ∴的面積為           ……………………6分

(2)∵a =7  ∴c=5                                  ……………………7分

 由余弦定理得:      

    ∴                                     ……………………9分

又由余弦定理得:         

又C為內(nèi)角      ∴                           ……………………12分

另解:由正弦定理得:  ∴ 又  ∴

 

查看答案和解析>>

如圖是單位圓上的點(diǎn),分別是圓軸的兩交點(diǎn),為正三角形.

(1)若點(diǎn)坐標(biāo)為,求的值;

(2)若,四邊形的周長為,試將表示成的函數(shù),并求出的最大值.

【解析】第一問利用設(shè) 

∵  A點(diǎn)坐標(biāo)為∴   ,

(2)中 由條件知  AB=1,CD=2 ,

中,由余弦定理得 

  ∴ 

∵       ∴    ,

∴  當(dāng)時(shí),即 當(dāng) 時(shí) , y有最大值5. .

 

查看答案和解析>>

已知△的內(nèi)角所對的邊分別為.

 (1) 若, 求的值;

(2) 若△的面積 求的值.

【解析】本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力。第一問中,得到正弦值,再結(jié)合正弦定理可知,,得到(2)中所以c=5,再利用余弦定理,得到b的值。

解: (1)∵, 且,   ∴ .        由正弦定理得,    ∴.    

   (2)∵       ∴.   ∴c=5      

由余弦定理得,

 

查看答案和解析>>

已知向量=(),=(,),其中().函數(shù),其圖象的一條對稱軸為

(I)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;

(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若=1,b=l,S△ABC=,求a的值.

【解析】第一問利用向量的數(shù)量積公式表示出,然后利用得到,從而得打解析式。第二問中,利用第一問的結(jié)論,表示出A,結(jié)合正弦面積公式和余弦定理求解a的值。

解:因?yàn)?/p>

由余弦定理得,……11分故

 

查看答案和解析>>

已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時(shí),求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時(shí),直線l方程為y=-x+3,此時(shí),x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時(shí),直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步練習(xí)冊答案