(2)設(shè)直線過(guò)橢圓的焦點(diǎn)且與圓C相切.求直線的方程.解: 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為 , 在軸負(fù)半軸上有一點(diǎn),且

(1)若過(guò)三點(diǎn)的圓 恰好與直線相切,求橢圓C的方程;

(2)在(1)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說(shuō)明理由.

 

查看答案和解析>>

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且

(1)若過(guò)三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;

(2)在(1)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說(shuō)明理由.

 

查看答案和解析>>

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為 , 在軸負(fù)半軸上有一點(diǎn),且

(1)若過(guò)三點(diǎn)的圓 恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說(shuō)明理由.

查看答案和解析>>

設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且
(1)若過(guò)三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說(shuō)明理由.

查看答案和解析>>

設(shè)橢圓數(shù)學(xué)公式的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,在x軸上有一點(diǎn)B,滿足AB⊥AF2且F1為BF2的中點(diǎn).
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若過(guò)A、B、F2三點(diǎn)的圓恰好與直線數(shù)學(xué)公式相切,判斷橢圓C和直線l的位置關(guān)系.

查看答案和解析>>


同步練習(xí)冊(cè)答案