(3)由及①②兩式易得∴的公差 查看更多

 

題目列表(包括答案和解析)

已知:n=
n(n+1)
2
-
(n-1)•n
2
,n•(n+1)=
n•(n+1)•(n+2)
3
-
(n-1)•n•(n+1)
3

由以上兩式,可以類比得到n(n+1)(n+2)=
n(n+1)(n+2)(n+3)
4
-
(n-1)•n•(n+1)(n+2)
4
n(n+1)(n+2)(n+3)
4
-
(n-1)•n•(n+1)(n+2)
4

查看答案和解析>>

已知:1+3=22,1+3+5+7+9=52.由以上兩式,可以類比得到:1+3+5+7+9+11+13=
72
72

查看答案和解析>>

已知:1+3=22,1+3+5+7+9=52.由以上兩式,可以類比得到:1+3+5+7+9+11+13=   

查看答案和解析>>

(Ⅰ)觀察①tan10°tan20°+tan20°tan60°+tan60°tan10°=1
    ②tan5°tan10°+tan10°tan75°+tan75°tan5°=1
由以上兩式成立,推廣到一般結(jié)論,寫出你的推論.
(Ⅱ)函數(shù)f(x)=-x2+2ax+1-a在區(qū)間[0,1]上有最大值2,求實(shí)數(shù)a的值.

查看答案和解析>>

某種家用電器每臺(tái)的銷售利潤(rùn)與該電器的無(wú)故障使用時(shí)間T(單位:年)有關(guān).若T≤1,則銷售利潤(rùn)為0元;若1<T≤3,則銷售利潤(rùn)為100元;若T>3,則銷售利潤(rùn)為200元.設(shè)每臺(tái)該種電器的無(wú)故障使用時(shí)間T≤1,1<T≤3及T>3這三種情況發(fā)生的概率分別為P1,P2,P3,又知P1,P2是方程25x2-15x+a=0的兩個(gè)根,且P2=P3
(1)求P1,P2,P3的值;
(2)記ξ表示銷售兩臺(tái)這種家用電器的銷售利潤(rùn)總和,求ξ的分布列;
(3)求銷售兩臺(tái)這種家用電器的銷售利潤(rùn)總和的平均值.

查看答案和解析>>


同步練習(xí)冊(cè)答案
关 闭