16.已知向量....函數(shù).若的圖象的一個(gè)對稱中心與它相鄰的一個(gè)對稱軸之間的距離為1.且過點(diǎn). 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)

已知向量,函數(shù)·,

       (Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

       (Ⅱ)如果△ABC的三邊a、b、c滿足,且邊b所對的角為,試求的范圍及函數(shù)的值域

 

查看答案和解析>>

(本題滿分12分)

已知向量,(其中實(shí)數(shù)不同時(shí)為零),當(dāng)時(shí),,當(dāng)時(shí),

(Ⅰ) 求函數(shù)式

(Ⅱ)求函數(shù)的單調(diào)遞減區(qū)間;

(Ⅲ)若對,都有,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

(本題滿分12分)
已知向量,函數(shù)·
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)如果△ABC的三邊a、bc滿足,且邊b所對的角為,試求的范圍及函數(shù)的值域.

查看答案和解析>>

(本題滿分12分)
已知向量,函數(shù)·,
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)如果△ABC的三邊a、bc滿足,且邊b所對的角為,試求的范圍及函數(shù)的值域.
 

查看答案和解析>>

(本小題滿分12分)

已知向量,,函數(shù)

(1)求函數(shù)的最小正周期和值域;www.ks5u

(2) 在中,分別是角的對邊,且,,且,求 

查看答案和解析>>

一、             

二、11.210      12.         13.2    14.         15.

三.解答題:

16. 解:(1)

……………………………………………………………3分

由題意得周期,故…………………………………………4分

又圖象過點(diǎn),所以

,而,所以

……………………………………………………6分

(2)當(dāng)時(shí),

∴當(dāng)時(shí),即時(shí),是減函數(shù)

當(dāng)時(shí),即時(shí),是增函數(shù)

∴函數(shù)的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是………………12分

17.解:記“甲回答對這道題”、“ 乙回答對這道題”、“丙回答對這道題”分別為事件、、,則,且有,即

……………………………………………………………………6分

(2)由(1),.

則甲、乙、丙三人中恰有兩人回答對該題的概率為:

……………………12分

18. 解法一 公理化法

(1)當(dāng)時(shí),取的中點(diǎn),連接,因?yàn)?sub>為正三角形,則,由于的中點(diǎn)時(shí),

平面,∴平面,∴.………………………………………………4分

(2)當(dāng)時(shí),過,如圖所示,則底面,過,連結(jié),則,為二面角的平面角,

,

,即二面角的大小為.…………………………………………………8分

(3)設(shè)到面的距離為,則,平面,

即為點(diǎn)到平面的距離,

,

解得

到平面的距離為.…………………………………………………………………………12分

解法二 向量法

為原點(diǎn),軸,過點(diǎn)與垂直的直線為軸,軸,建立空間直角坐標(biāo)系,如圖所示,

設(shè),則

(1)由

,

,………………………………4分

(2)當(dāng)時(shí),點(diǎn)的坐標(biāo)是

設(shè)平面的一個(gè)法向量,則

,則,

又平面的一個(gè)法向量為

又由于二面角是一個(gè)銳角,則二面角的大小是.……………………8分

(3)設(shè)到面的距離為

到平面的距離為.………………………………………………………………………12分

19. 解:(Ⅰ)由于,

故在點(diǎn)處的切線方程是…………………………………………2分

,故表示同一條直線,

,,.……6分

(Ⅱ) 由于,

,所以函數(shù)的單調(diào)區(qū)間是,…………………………8分

 

,

實(shí)數(shù)的取值范圍是.………………………………………………………12分

20. 解:(Ⅰ)設(shè)過與拋物線的相切的直線的斜率是,

則該切線的方程為:

都是方程的解,故………………………………………………4分

(Ⅱ)設(shè)

由于,故切線的方程是:,又由于點(diǎn)在上,則

,

,同理

則直線的方程是,則直線過定點(diǎn).………………………………………8分

(Ⅲ)要使最小,就是使得到直線的距離最小,

到直線的距離,當(dāng)且僅當(dāng)時(shí)取等號.………………………………………………………………10分

設(shè)

,則

.…………13分

21. 解:(Ⅰ)由題意知……1分

 …………3分

檢驗(yàn)知時(shí),結(jié)論也成立

.………………………………………………………………………………4分

(Ⅱ) ①由于

………………………………………………9分

②若,其中,則有,則,

,

(其中表示不超過的最大整數(shù)),則當(dāng)時(shí),. ………………………………………………………14分

 

 

 


同步練習(xí)冊答案