y-c-y 查看更多

 

題目列表(包括答案和解析)

2、y=(sinx-cosx)2-1是( 。

查看答案和解析>>

y=
2x-x2
(1≤x≤2)
反函數(shù)是(  )
A、y=1+
1-x2
(-1≤x≤1)
B、y=1+
1-x2
(0≤x≤1)
C、y=1-
1-x2
(-1≤x≤1)
D、y=1-
1-x2
(0≤x≤1)

查看答案和解析>>

y=2cosx的圖象經(jīng)過怎樣的變換能變成函數(shù)y=2cos(2x+
π
3
)
的圖象( 。
A、向左平移
π
3
個單位長度,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
B、向左平移
π
6
個單位長度,再將圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
,縱坐標(biāo)不變
C、將圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
,縱坐標(biāo)不變,再向左平移
π
6
個單位長度
D、將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再向左平移
π
6
個單位長度

查看答案和解析>>

y=x
3
5
在[-1,1]上是( 。
A、增函數(shù)且是奇函數(shù)
B、增函數(shù)且是偶函數(shù)
C、減函數(shù)且是奇函數(shù)
D、減函數(shù)且是偶函數(shù)

查看答案和解析>>

y=2|1-x|的圖象大致是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 DABBA    6―10 DDCCB    11―12 AC

二、填空題:本大題共4小題,每小題5分,共20分。

13.    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時(shí),

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

19.(本小題滿分12分)

解法一:

   (I)證明

如圖,連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點(diǎn).

又E為PC的中點(diǎn),

∴EG//PA。

∵EG平面EDB,PA平面EDB,

∴PA//平面EDB   ………………4分

   (II)證明:

∵ PD⊥底面ABCD,∴PD⊥BC,PD⊥DC,PD⊥DB

又∵BC⊥DC,PD∩DC=D,

∴BC⊥平面PDC。

∴PC是PB在平面PDC內(nèi)的射影。

∵PD⊥DC,PD=DC,點(diǎn)E是PC的中點(diǎn),

∴DE⊥PC。

由三垂線定理知,DE⊥PB。

∵DE⊥PB,EF⊥PB,DE∩EF=E,

∴PB⊥平面EFD。   …………………………8分

   (III)解:

∵PB⊥平面EFD,

∴PB⊥FD。

又∵EF⊥PB,F(xiàn)D∩EF=F,

∴∠EFD就是二面角C―PB―D的平面角。………………10分

∵PD=DC=BC=2,

∴PC=DB=

∵PD⊥DB,

由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

∴DE⊥平面PBC。

∵EF平面PBC,

∴DE⊥EF。

∴∠EFD=60°。

故所求二面角C―PB―D的大小為60°。  ………………12分

解法二:

如圖,以點(diǎn)D為坐標(biāo)原點(diǎn),DA、DC、DP所在直線分別為x軸、y軸、z軸,

建立空間直角坐標(biāo)系,得以下各點(diǎn)坐標(biāo):D(0,0,0),A(2,0,0),B(2,2,0),

C(0,2,0),P(0,0,2)   ………………1分

   (I)證明:

連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點(diǎn).G點(diǎn)坐標(biāo)為(1,1,0)。

        高考資源網(wǎng)www.ks5u.com

        ∴PA//平面EDB   ………………4分

           (II)證明:

           (III)解:

        ∵PB⊥平面EFD,

        ∴PB⊥FD。

        又∵EF⊥PB,F(xiàn)D∩EF=F,

        ∴∠EFD就是二面角C―PB―D的平面角!10分

        ∴∠EFD=60°。

        故所求二面角C―PB―D的大小為60°。  ………………12分

        20.(本小題滿分12分)

           (I)解:

        設(shè) “從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨(dú)立,所以取出的4個球均為黑球的概率為

           ………………2分

        依題設(shè)

        故乙盒內(nèi)紅球的個數(shù)為2。  ……………………5分

        (II)解: 由(I)知

        ξ的分布列為

        ξ

        0

        1

        2

        3

        P

                                                             ………………10分

         ………………12分

        21.(本小題滿分12分)

           (I)解:由題意設(shè)雙曲線S的方程為   ………………2分

        c為它的半焦距,

           (II)解:

        22.(本小題滿分12分)

           (I)解:

          

           (III)解:

           (III)解:

         

         

        w.w.w.k.s.5.u.c.o.m

        www.ks5u.com


        同步練習(xí)冊答案