題目列表(包括答案和解析)
如圖,點A是△ABC和△ADE的公共頂點,∠BAC+∠DAE=180°,AB=k?AE,AC=k?AD,點M是DE的中點,直線AM交直線BC于點N.
⑴探究∠ANB與∠BAE的關系,并加以證明.
說明:如果你經(jīng)過反復探索沒解決問題,可以從下面①②中選取一個作為已知條件,再完成你的證明,選、俦冗x原題少得2分,選、诒冗x原題少得5分.
① 如圖18,k=1;②如圖19,AB=AC.
⑵若△ADE繞點A旋轉,其他條件不變,則在旋轉的過程中⑴的結論是否發(fā)生變化?如果沒有發(fā)生變化,請寫出一個可以推廣的命題;如果有變化,請畫出變化后的一個圖形,并直接寫出變化后∠ANB與∠BAE的關系.
閱讀材料:如圖(1),在四邊形ABCD中,對角線AC⊥BD,垂足為P,
求證:S四邊形ABCD=AC?BD.
證明:∵AC⊥BD,∴
∴S四邊形ABCD=S△ACD+ S△ABC=AC?PD+AC?PB=AC(PD+PB)=AC?BD。
解答問題:
(1)上述證明得到的性質可敘述為: .
(2)已知:如圖(2),等腰梯形ABCD中,AD∥BC,對角線AC⊥BD且相交于點P,AD=3cm,BC=7cm,利用上述的性質求梯形的面積。
請看下面的問題:把分解因式分析:這個二項式既無公因式可提,也不能直接利用公式,怎么辦呢?19世紀的法國數(shù)學家蘇菲?熱門抓住了該式只有兩項,而且屬于平方和的形式,要使用公式就必須添一項,隨即將此項減去,即可得人們?yōu)榱思o念蘇菲?熱門給 出這一解法,就把它叫做“熱門定理”,請你依照蘇菲?熱門的做法,將下列各式因式分解.
(1) (2)
已知四邊形ABCD中,P是對角線BD上的一點,過P作MN∥AD,EF∥CD,分別交AB、CD、AD、BC于點M、N、E、F,設=PM?PE,=PN?PF,解答下列問題:
(1)當四邊形ABCD是矩形時,見圖1,請判斷與的大小關系,并說明理由;
(2)當四邊形ABCD是平行四邊形,且∠A為銳角時,見圖2,(1)中的結論是否成立?并說明理由;
(3)在(2)的條件下,設,是否存在這樣的實數(shù),使得?若存在,請求出滿足條件的所有的值;若不存在,請說明理由。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com