把B點坐標(.0)代入關系式得..解得t1=0. 查看更多

 

題目列表(包括答案和解析)

 如圖所示,已知在直角梯形中,軸于點.動點點出發(fā),沿軸正方向以每秒1個單位長度的速度移動.過點作垂直于直線,垂足為.設點移動的時間為秒(),與直角梯形重疊部分的面積為

(1)求經過三點的拋物線解析式;

(2)將繞著點順時針旋轉,是否存在,使得的頂點在拋物線上?若存在,直接寫出的值;若不存在,請說明理由.

(3)求的函數關系式.

【解析】(1)設拋物線解析式為y=ax2+bx,把已知坐標代入求出拋物線的解析式(2)根據旋轉的性質,代入解析式,判斷是否存在(3)求出S的面積,根據t的取值不同分三種情況討論S與t的函數關系式

 

查看答案和解析>>

 如圖所示,已知在直角梯形中,軸于點.動點點出發(fā),沿軸正方向以每秒1個單位長度的速度移動.過點作垂直于直線,垂足為.設點移動的時間為秒(),與直角梯形重疊部分的面積為

(1)求經過三點的拋物線解析式;

(2)將繞著點順時針旋轉,是否存在,使得的頂點在拋物線上?若存在,直接寫出的值;若不存在,請說明理由.

(3)求的函數關系式.

【解析】(1)設拋物線解析式為y=ax2+bx,把已知坐標代入求出拋物線的解析式(2)根據旋轉的性質,代入解析式,判斷是否存在(3)求出S的面積,根據t的取值不同分三種情況討論S與t的函數關系式

 

查看答案和解析>>

如圖,在直角坐標系中,是原點,三點的坐標分別,四邊形是梯形,點同時從原點出發(fā),分別作勻速運動,其中點沿向終點運動,速度為每秒個單位,點沿向終點運動,當這兩點有一點到達自己的終點時,另一點也停止運動.

(1)求直線的解析式.

(2)設從出發(fā)起,運動了秒.如果點的速度為每秒個單位,試寫出點的坐標,并寫出此時 的取值范圍.

(3)設從出發(fā)起,運動了秒.當,兩點運動的路程之和恰好等于梯形的周長的一半,這時,直線能否把梯形的面積也分成相等的兩部分,如有可能,請求出的值;如不可能,請說明理由.

【解析】(1)根據待定系數法就可以求出直線OC的解析式(2)本題應分Q在OC上,和在CB上兩種情況進行討論.即0≤t≤5和5<t≤10兩種情況(3)P、Q兩點運動的路程之和可以用t表示出來,梯形OABC的周長就可以求得.當P、Q兩點運動的路程之和恰好等于梯形OABC的周長的一半,就可以得到一個關于t的方程,可以解出t的值.梯形OABC的面積可以求出,梯形OCQP的面積可以用t表示出來.把t代入可以進行檢驗

 

查看答案和解析>>

如圖,在直角坐標系中,是原點,三點的坐標分別,四邊形是梯形,點同時從原點出發(fā),分別作勻速運動,其中點沿向終點運動,速度為每秒個單位,點沿向終點運動,當這兩點有一點到達自己的終點時,另一點也停止運動.

(1)求直線的解析式.

(2)設從出發(fā)起,運動了秒.如果點的速度為每秒個單位,試寫出點的坐標,并寫出此時 的取值范圍.

(3)設從出發(fā)起,運動了秒.當,兩點運動的路程之和恰好等于梯形的周長的一半,這時,直線能否把梯形的面積也分成相等的兩部分,如有可能,請求出的值;如不可能,請說明理由.

【解析】(1)根據待定系數法就可以求出直線OC的解析式(2)本題應分Q在OC上,和在CB上兩種情況進行討論.即0≤t≤5和5<t≤10兩種情況(3)P、Q兩點運動的路程之和可以用t表示出來,梯形OABC的周長就可以求得.當P、Q兩點運動的路程之和恰好等于梯形OABC的周長的一半,就可以得到一個關于t的方程,可以解出t的值.梯形OABC的面積可以求出,梯形OCQP的面積可以用t表示出來.把t代入可以進行檢驗

 

查看答案和解析>>

精英家教網閱讀理解
九年級一班數學學習興趣小組在解決下列問題中,發(fā)現該類問題不僅可以應用“三角形相似”知識解決問題,還可以“建立直角坐標系、應用一次函數”解決問題.
請先閱讀下列“建立直角坐標系、應用一次函數”解決問題的方法,然后再應用此方法解決后續(xù)問題.
問題:如圖(1),直立在點D處的標桿CD長3m,站立在點F處的觀察者從點E處看到標桿頂C、旗桿頂A在一條直線上.已知BD=15m,FD=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標系,則線段AE可看作一個一次函數的圖象.
由題意可得各點坐標為:點E(0,1.6),C(2,3),B(17,0),且所求的高度就為點A的縱坐標.
設直線AE的函數關系式為y=kx+b.
把E(0,1.6),C(2,3)代入得
b=1.6
2k+b=3.
解得
k=0.7
b=1.6.
精英家教網
∴y=0.7x+1.6.
∴當x=17時,y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點D處測得自己的影長DF=3m,BD=9m,沿BD方向到達點F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>


同步練習冊答案