即點(diǎn)M的縱坐標(biāo)為定值 查看更多

 

題目列表(包括答案和解析)

設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
的圖象上兩點(diǎn),且
OM
=
1
2
(
OA
+
OB
)
,O為坐標(biāo)原點(diǎn),已知點(diǎn)M的橫坐標(biāo)為
1
2

(Ⅰ)求證:點(diǎn)M的縱坐標(biāo)為定值;
(Ⅱ)定義定義Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011;
(Ⅲ)對(duì)于(Ⅱ)中的Sn,設(shè)an=
1
2Sn+1
(n∈N*)
.若對(duì)于任意n∈N*,不等式kan3-3an2+1>0恒成立,試求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
的圖象上任意兩點(diǎn),且M為A,B的中點(diǎn),并已知點(diǎn)M的橫坐標(biāo)為
1
2

(1)求證:點(diǎn)M的縱坐標(biāo)為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
),n∈N*
,且n≥2,求Sn
(3)在(2)的條件下,是否存在實(shí)數(shù)λ,使λ<|
Sn-2
S2n-2
|≤λ2
-2λ對(duì)任意n≥2,n∈N*恒成立?若存在,試求出λ的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知拋物線x2=4y及定點(diǎn)P(0,8),A、B是拋物線上的兩動(dòng)點(diǎn),且
AP
PB
(λ>0)
.過(guò)A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M.
(Ⅰ)證明:點(diǎn)M的縱坐標(biāo)為定值;
(Ⅱ)是否存在定點(diǎn)Q,使得無(wú)論AB怎樣運(yùn)動(dòng),都有∠AQP=∠BQP?證明你的結(jié)論.

查看答案和解析>>

已知拋物線C1:y=x2,橢圓C2:x2+
y24
=1.
(1)設(shè)l1,l2是C1的任意兩條互相垂直的切線,并設(shè)l1∩l2=M,證明:點(diǎn)M的縱坐標(biāo)為定值;
(2)在C1上是否存在點(diǎn)P,使得C1在點(diǎn)P處切線與C2相交于兩點(diǎn)A、B,且AB的中垂線恰為C1的切線?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

P、Q是拋物線C:y=x2上兩動(dòng)點(diǎn),直線l1,l2分別是C在點(diǎn)P、點(diǎn)Q處的切線,l1∩l2=M,l1⊥l2
(1)求證:點(diǎn)M的縱坐標(biāo)為定值,且直線PQ經(jīng)過(guò)一定點(diǎn);
(2)求△PQM面積的最小值.

查看答案和解析>>


同步練習(xí)冊(cè)答案