題目列表(包括答案和解析)
(本小題滿分12分)
某校有一貧困學生因病需手術治療,但現(xiàn)在還差手術費1.1萬元.團委計劃在全校開展愛心募捐活動,為了增加活動的趣味性吸引更多學生參與,特舉辦“搖獎100%中獎”活動.凡捐款10元便可享受一次搖獎機會,如圖是搖獎機的示意圖,搖獎機的旋轉盤是均勻的,扇形區(qū)域A,B,C,D,E所對應的圓心角的比值分別為1:2:3:4:5.相應區(qū)域分別設立一、二、三、四、五等獎,獎品分別為價值5元、4元、3元、2元、1元的學習用品.搖獎時,轉動圓盤片刻,待停止后,固定指針指向哪個區(qū)域(邊線忽略不計)即可獲得相應價值的學習用品(如圖指針指向區(qū)域,可獲得價值3元的學習用品).
(1)預計全校捐款10元者將會達到1500人次,那么除去購買學習用品的款項后,剩余款項是否能幫助該生完成手術治療?
(2)如果學生甲捐款20元,獲得了兩次搖獎機會,求他獲得價值6元時的學習用品的概率.
本題滿分12分)
某超市為促銷商品,特舉辦“購物有獎100%中獎”活動,凡消費者在該超市購物滿10元,可獲得一次搖獎機會,購物滿20元,可獲得兩次搖獎機會,以此類推,搖獎機結構如圖,將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球將自由下落,小球在下落過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,落入A袋為一等獎,獎金2元,落入B袋為二等獎,獎金1元,已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
(I)求搖獎兩次均獲得一等獎的概率;
(II)某消費者購物滿20元,搖獎后所得獎金為X元,試求X的分布列與期望;
(III)若超市同時舉行購物八八折讓利于消費者活動(打折后不能再參加搖獎),某消費者剛好消費20元,請問他是選擇搖獎還是選擇打折比較劃算。
說明:
一、本解答給出一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題
的主要考查內容比照評分標準制訂相應的評分細則.
二、對計算題當考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的
內容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應得分數(shù)的一半;如
果后續(xù)部分的解答有較嚴重的錯誤,就不再給分.
三、解答右端所注分數(shù),表示考生正確做到這一步應得累加分.
四、只給整數(shù)分數(shù),選擇題和填空題不給中間分數(shù).
一、選擇題(每小題5分,滿分60分)
1.C
2 B 3 B 4 D 5 D 6 B
簡答與提示:
1.程組可得交點,故選C
2.正弦定理可知“” 是使“”成立的充要條件。故選C
3.。故選B
4. 因為四個命題均有線在面內的可能,所以均不正確,故選D
5. 故選D
6以為直徑的圓與圓的公共弦即為所求,直線方程為,故
選B.
7.將的圖像先向左平移個單位得到的圖像,再沿軸將橫坐標壓縮到原來的倍(縱坐標不變)得到的圖像,故選A
8.在點處目標函數(shù)取得最大值為-1,故選D.
9. 先在后三位中選兩個位置填兩個數(shù)字“
法,再決定用數(shù)字“
故選B.
10.
最大,也可用賦值法,代入即可,故選B
11.
,當三點共線時取得最小值,故選C
12. 因為函數(shù)在其定義域內為減函數(shù),所以
恒成立,即為減函數(shù)(切線斜率減小),故選A
13. 14. 15. 9 16. ①②④
簡答與提示:
13.設正方體棱長為,則
14. ∵,∴,∴.
15.
16.由知函數(shù)關于點對稱,且可得,由
知函數(shù)關于軸對稱,進一步可推出周期為4,所以,故①②④正確
三、解答題(滿分70分)
17.本小題主要考查三角函數(shù)的基本公式、三角恒等變換、三角函數(shù)圖象及性質.
解:(1)∵
∴.
(2)當,即時,, ,
當,即,,
∴函數(shù)的值域為[,1].
18.(1)本小題主要考查概率的基本知識與分類思想,考查運用數(shù)學知識分析問題解決問題的
能力.
解.(1)中一等獎的概率為,
中二等獎的概率為,
中三等獎的概率為,
∴搖獎一次中獎的概率為
(2)由(1)可知,搖獎一次不中獎的概率為
兩次搖獎莊家獲利包括兩次均未中獎和一次未中獎一次中三等獎兩種情況,
所以莊家獲利的概率為:
19. 本小題主要考查空間線面位置關系、異面直線所成角、二面角等基本知識,考查空間想象能力、邏輯思維能力和運算能力以及空間向量的應用.
解法一:(1)證明:
取中點為,連結、,
∵△是等邊三角形,
∴
又∵側面底面,
∴底面,
∴為在底面上的射影,
又∵,
,
∴,
∴,
∴,
∴.
(2)取中點,連結、,
∵.
∴.
又∵,,
∴平面,
∴,
∴是二面角的平面角.
∵,,
∴.
∴,
∴,
∴,
∴二面角的大小為
解法二:證明:(1) 取中點為,中點為,連結,
∵△是等邊三角形,
∴,
又∵側面底面,
∴底面,
∴以為坐標原點,建立空間直角坐標系
如圖, (2分)
∵,△是等邊三角形,
∴,
∴.
∴.
∵
∴.
(2)設平面的法向量為
∵
∴
令,則,∴
設平面的法向量為,
∵,
∴,
令,則,∴
∴,
∴,
∴二面角的大小為.
20.本小題主要考查函數(shù)的單調性、極值等基本知識,考查運用導數(shù)研究函數(shù)性質的方法,函數(shù)與方程思想,考查分析問題和解決問題的能力。
解:(1)
(2)
方程有3個不等實根
函數(shù)的圖像與軸有三個不同的交點
21.本小題主要考查等差數(shù)列定義、通項、數(shù)列求和、不等式等基礎知識,考查綜合分析問題的能力和推理論證能力。
解:(1)
數(shù)列是以2為首項,以1為公差的等差數(shù)列。
(3)
22. 本小題主要考查直線、橢圓等平面解析幾何的基礎知識,考查軌跡的求法以及綜合解題能力
解:(1)設,則
∵,∴,∴,
又
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com