試在線段上確定一點(diǎn).使得平面. 查看更多

 

題目列表(包括答案和解析)

如圖,在多面體ABCDE中,DB丄平面ABC,AEDB,且△ABC是邊長為2的等邊三角形,AE1,BD2

()在線段DC上存在一點(diǎn)F,使得EF丄面DBC,試確定F的位置,并證明你的結(jié)論;

()求二面角DECB的平面角的余弦值.

查看答案和解析>>

如圖,四邊形為矩形,平面,.

(Ⅰ)求證:;

(Ⅱ)設(shè)是線段的中點(diǎn),試在線段

確定一點(diǎn),使得平面.

查看答案和解析>>

在棱長為1的正方體ABCD-A1B1C1D1中,P是側(cè)棱CC1上的一點(diǎn),CP=m.

(1)試確定m,使得直線AP與平面BDD1B1所成角的正切值為;

(2)在線段A1C1上是否存在一個定點(diǎn)Q,使得對任意的m,D1Q在平面APD1上的射影垂直于AP.

查看答案和解析>>

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,P是側(cè)棱CC1上的一點(diǎn),CP=m.
(1)試確定m,使直線AP與平面BDD1B1所成角的正切值為3
2
;
(2)在線段A1C1上是否存在一個定點(diǎn)Q,使得對任意的m,D1Q在平面APD1上的射影垂直于AP,并證明你的結(jié)論.

查看答案和解析>>

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,P是側(cè)棱CC1上的一點(diǎn),CP=m,
(Ⅰ)試確定m,使直線AP與平面BDD1B1所成角的正切值為3
(Ⅱ)在線段A1C1上是否存在一個定點(diǎn)Q,使得對任意的m,D1Q在平面APD1上的射影垂直于AP,并證明你的結(jié)論。

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1.A   2.C     3.C   4.D  5.B   6.A   7.D   8.D  9.C   10.B    11.B      12.D

二、填空題(每小題4分,共16分)

   13.    14.3825     15.1      16.0ⅠⅡ

三、解答題

17.解:(Ⅰ)在中,由及余弦定理得

      而,則

      (Ⅱ)由及正弦定理得,

      而,則

      于是,

     由,當(dāng)時,

18解:(Ⅰ)基本事件共有36個,方程有正根等價(jià)于,即。設(shè)“方程有兩個正根”為事件,則事件包含的基本事件為共4個,故所求的概率為;

(Ⅱ)試驗(yàn)的全部結(jié)果構(gòu)成區(qū)域,其面積為

設(shè)“方程無實(shí)根”為事件,則構(gòu)成事件的區(qū)域?yàn)?/p>

,其面積為

故所求的概率為

19.解:(Ⅰ)證明:由平面平面,則

   而平面,則,又,則平面,

   又平面,故。

(Ⅱ)在中,過點(diǎn)于點(diǎn),則平面.

由已知及(Ⅰ)得.

(Ⅲ)在中過點(diǎn)于點(diǎn),在中過點(diǎn)于點(diǎn),連接,則由

  由平面平面,則平面

再由平面,又平面,則平面.

  故當(dāng)點(diǎn)為線段上靠近點(diǎn)的一個三等分點(diǎn)時,平面.

  20.解:(Ⅰ)設(shè)等差數(shù)列的公差為,

,

(Ⅱ)由

,故數(shù)列適合條件①

,則當(dāng)時,有最大值20

,故數(shù)列適合條件②.

綜上,故數(shù)列是“特界”數(shù)列。

     21.證明:消去

設(shè)點(diǎn),則

,,即

化簡得,則

,故

(Ⅱ)解:由

  化簡得

    由,即

故橢圓的長軸長的取值范圍是。

22.解:(Ⅰ),由在區(qū)間上是增函數(shù)

則當(dāng)時,恒有,

在區(qū)間上恒成立。

,解得.

(Ⅱ)依題意得

,解得

在區(qū)間上的最大值是。

(Ⅲ)若函數(shù)的圖象與函數(shù)的圖象恰有3個不同的交點(diǎn),

即方程恰有3個不等的實(shí)數(shù)根。

是方程的一個實(shí)數(shù)根,則

方程有兩個非零實(shí)數(shù)根,

.

故滿足條件的存在,其取值范圍是.

 

w.w.w.k.s.5.u.c.o.m

www.ks5u.com


同步練習(xí)冊答案