解法一:因?yàn)槠矫?平面.所以平面平面. 查看更多

 

題目列表(包括答案和解析)

如圖,在三棱錐中,平面平面,,,中點(diǎn).(Ⅰ)求點(diǎn)B到平面的距離;(Ⅱ)求二面角的余弦值.

【解析】第一問(wèn)中利用因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

而平面平面,所以平面,再由題設(shè)條件知道可以分別以、、, 軸建立直角坐標(biāo)系得,,,,

故平面的法向量,故點(diǎn)B到平面的距離

第二問(wèn)中,由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

而平面平面,所以平面,

  再由題設(shè)條件知道可以分別以、、,, 軸建立直角坐標(biāo)系,得,,,,

,,故平面的法向量

,故點(diǎn)B到平面的距離

(Ⅱ)由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

 

查看答案和解析>>

如圖,在四棱錐中,⊥底面,底面為正方形,,分別是,的中點(diǎn).

(I)求證:平面;

(II)求證:;

(III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.

【解析】第一問(wèn)利用線面平行的判定定理,,得到

第二問(wèn)中,利用,所以

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921145879762728/SYS201206192116075476939219_ST.files/image018.png">,,從而得

第三問(wèn)中,借助于等體積法來(lái)求解三棱錐B-EFC的體積.

(Ⅰ)證明: 分別是的中點(diǎn),    

.       …4分

(Ⅱ)證明:四邊形為正方形,

,

, ,

.    ………8分

(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,

 

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD,AC=2,PA=2,E是PC上的一點(diǎn),PE=2EC.

(Ⅰ)證明:PC⊥平面BED;

(Ⅱ)設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】解法一:因?yàn)榈酌鍭BCD為菱形,所以BDAC,又

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點(diǎn),PE=2EC。

(I)     證明PC平面BED;

(II)   設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運(yùn)用。

從題中的線面垂直以及邊長(zhǎng)和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長(zhǎng)度,并加以證明和求解。

解法一:因?yàn)榈酌鍭BCD為菱形,所以BDAC,又

【點(diǎn)評(píng)】試題從命題的角度來(lái)看,整體上題目與我們平時(shí)練習(xí)的試題和相似,底面也是特殊的菱形,一個(gè)側(cè)面垂直于底面的四棱錐問(wèn)題,那么創(chuàng)新的地方就是點(diǎn)E的位置的選擇是一般的三等分點(diǎn),這樣的解決對(duì)于學(xué)生來(lái)說(shuō)就是比較有點(diǎn)難度的,因此最好使用空間直角坐標(biāo)系解決該問(wèn)題為好。

 

查看答案和解析>>

壯懷激烈千古恨 初出茅廬志已衰

  繼薩凱里之后,大概又過(guò)了半個(gè)世紀(jì).歐洲“數(shù)學(xué)之王”高斯的至友匈牙利數(shù)學(xué)家伏爾夫剛·鮑里埃,終身從事證明“第五公設(shè)”的研究,由于心血耗盡,毫無(wú)成效,便懷著沉重的心情,給那酷愛(ài)數(shù)學(xué)的兒子亞諾什·鮑耶(1802~1860)寫(xiě)信,希望小鮑耶“不要再做克服平行公理的嘗試”.他忠告兒子說(shuō):“投身于這一貪得無(wú)度地吞人們的智慧、精力和心血的無(wú)底洞,白花時(shí)間在上面,一輩子也證不出這個(gè)命題來(lái).”他滿腹心酸地寫(xiě)到:“我經(jīng)過(guò)了這個(gè)毫無(wú)希望的夜的黑暗,我在這里面埋沒(méi)了人生的一切亮光、一切歡樂(lè)和一切希望.”最后告誡自己心愛(ài)的兒子說(shuō):“若再癡戀這一無(wú)止無(wú)休的勞作,必然會(huì)剝奪你生活的一切時(shí)間、健康、休息和幸福!”但是,年僅21歲的小鮑耶卻是敢向“無(wú)底洞”覓求真知的探索者.他認(rèn)真吸取前人失敗的教訓(xùn),初出茅廬就大顯身手.小鮑耶匠心獨(dú)運(yùn),大膽創(chuàng)新,決然將“第五公設(shè)”換成他自身的否定.從“三角形三個(gè)內(nèi)角和小于180°”這一令人瞠目結(jié)舌的假設(shè)出發(fā),建立起一套完整協(xié)調(diào)、天衣無(wú)縫的新幾何體系.小鮑耶滿懷激情地將自己的科學(xué)創(chuàng)見(jiàn)向父親報(bào)捷.老伏爾夫剛以之見(jiàn)教于至友高斯,不久,高斯復(fù)信鮑里埃,信中寫(xiě)到:“如果我一開(kāi)始便說(shuō)我不能稱贊這樣的成果,你一定會(huì)感到驚訝.但是,我不能不這樣說(shuō),因?yàn)榉Q贊這些成果就等于稱贊我自己.令郎的這些工作,他走過(guò)的路,以及所獲得的成果,跟我過(guò)去30年至35年前的所思所得幾乎一模一樣.”高斯在回信結(jié)尾還開(kāi)誠(chéng)布公地提到:“我自己的著作,盡管寫(xiě)好的只是一部分,我本來(lái)也想發(fā)表,因?yàn)槲遗乱承┤说暮奥,現(xiàn)在,有了朋友的兒子能夠這樣寫(xiě)下來(lái),免得他與我一樣湮沒(méi),那是使我非常高興的.”這位當(dāng)代數(shù)學(xué)大師恐怕做夢(mèng)也沒(méi)想到,他這封推心置腹的信,竟會(huì)一舉撞毀初露鋒芒的數(shù)壇新星!

  高斯的復(fù)信給小鮑耶帶來(lái)意想不到的毀滅性打擊.躊躇滿志的鮑耶誤認(rèn)為高斯動(dòng)用自己擁有的崇高權(quán)威來(lái)壟斷和奪取這一新體系的發(fā)明優(yōu)先權(quán).為此,他痛心疾首,認(rèn)為自己心血澆灌出來(lái)的成果和嘔心瀝血的辛勤工作,竟得不到大家的理解、支持和同情.于是郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學(xué)研究.

1.對(duì)于“數(shù)學(xué)之王”高斯給鮑耶的回信,你有什么看法呢?如果你是高斯,你該怎樣回信?

2.躊躇滿志的鮑耶誤認(rèn)為“高斯動(dòng)用自己擁有的崇高權(quán)威來(lái)壟斷和奪取這一新體系的發(fā)明優(yōu)先權(quán)”,進(jìn)而“郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學(xué)研究”.你又有何看法呢?假如你是鮑耶,你又該怎么做呢?

查看答案和解析>>


同步練習(xí)冊(cè)答案