.評注:注意掌握復數(shù)有關概念的典型特征和兩個復數(shù)相等的充要條件.易錯指導:用概念解題要抓住概念的本質(zhì)列式.計算時注意正確使用復數(shù)的運算法則. 查看更多

 

題目列表(包括答案和解析)

如果復數(shù)
a+ii
的實部和虛部相等,則實數(shù)a等于
 

查看答案和解析>>

(理)如果復數(shù)(b∈R)的實部和虛部互為相反數(shù),則b的值等于

A.0                     B.1                   C.2                     D.3

查看答案和解析>>

復數(shù),若的實部和虛部互為相反數(shù),則實數(shù)b的值為

A.7        B.                C.                 D.-7

 

查看答案和解析>>

如果復數(shù)
a+i
i
的實部和虛部相等,則實數(shù)a等于______.

查看答案和解析>>

(理)如果復數(shù)(b∈R)的實部和虛部互為相反數(shù),則b=______________.

查看答案和解析>>

一、選擇題:

1.C.提示:

2.A.提示:直接利用“更相減損術(shù)”原理逐步運算即可.

3.B.提示:為實數(shù),所以

4.C.提示:這是一個條件分支結(jié)構(gòu),實質(zhì)是分段函數(shù)求最值問題,將函數(shù)定義域分為三段討論即可求解.分段函數(shù)為:,

時,解得,不合題意;當時,解得,不合題意;

時,解得,符合題意,所以當輸入的值為3時,輸出的值為8.

5.B.提示:由為純虛數(shù)得:.由,解得:.因為為第四象限角,所以,則,選B.

6.C.提示:此算法的功能為求解取到第一個大于或等于的值時,的表達式中最后一項的值.

.所以時,

此時

7.C.提示:令,則,∴

8.D.提示:框圖的功能是尋找滿足的最小的自然數(shù),可解得,

所以,則輸出的值為

9.D.提示:,此復數(shù)的對應點為,因為,所以,所以此復數(shù)的對應點在第四象限.

10.B.提示:設工序c所需工時數(shù)為x天,由題設關鍵路線是aceg.需工時1+x+4+1=10.∴x=4,即工序c所需工時數(shù)為4天.

11.A.提示:,……,所以

12.A.提示:根據(jù)題意可得:,解得.所以點落在以為端點的線段上,如右圖.表示線段上的點到的距離之和,顯然當共線時,和最小,此時,點是直線的交點,由圖知,交點為,所以

,當時,

二、填空題

13.,.提示:這是一個當型循環(huán)結(jié)構(gòu),由條件可知判斷的條件是:;處理框所填的是:

14.21分鐘.提示:根據(jù)流程,可以先燒水,泡面,在燒水泡面的11分鐘里,可以同時洗臉刷牙和上網(wǎng)查資料,這樣最短可用去11分鐘,然后吃飯用10分鐘,這樣他做完這些事情用的最短時間為21分鐘.

15..提示:設方程的實根為,代入方程得,可化為,所以有,解得

所以,所以其共軛復數(shù)為

16.4.提示:從圖中可以看出,一件成品必須經(jīng)過的工序次數(shù)是粗加工、檢驗、精加工或返修加工、檢驗,至少四次.

三、解答題:

17.解:由題知平行四邊形三頂點坐標為

設D點的坐標為

因為,得

,即

所以,則對應的復數(shù)為

⑵因為,所以復數(shù)的對應點Z在以為圓心,以2為半徑的圓上,

的最大值為

18.解:

19.解:因為,,

所以,若,則

消去可得:,

可化為,則當時,取最小值;當時,取最大值7.

所以

20.解:此程序的功能是求解函數(shù)的函數(shù)值.

根據(jù)題意知

則當時,;當時,;

所以,可以化為,

時,時,有最小值;當時,則時,有最小值

因為,所以所得值中的最小值為1.

21.解:

所以.因為,所以,

所以,則,即的模的取值范圍為

22.解:(1)算法的功能為:

(2)程序框圖為:

⑶程序語句為:

    ;

       

    ;

   

w.w.w.k.s.5.u.c.o.m

 


同步練習冊答案