(1)當(dāng)a=2.b=-2時. .設(shè)x為其不動點.即 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)為定義在R上的偶函數(shù),當(dāng)x<-1時,y=f(x)的圖象是經(jīng)過A(-2,0)、B(-3,-1)兩點的一條射線,當(dāng)-1≤x≤1時,y=f(x)的圖象是頂點在(0,),對稱軸是y軸,且過點(-1,1)的一段拋物線.

(1)試求函數(shù)y=f(x)的解析式;

(2)畫出f(x)的圖象并寫出其單調(diào)遞增區(qū)間.

查看答案和解析>>

已知以點C(t)(tR),t≠0)為圓心的圓與x軸交于點OA,與y軸交于點O,B,其中O為坐標(biāo)原點.

(1)求證:△OAB的面積為定值;

(2)設(shè)直線y=-2x+4與圓C交于點MN若|OM|=|ON|,求圓C的方程.

(3)若t>0,當(dāng)圓C的半徑最小時,圓C上至少有三個不同的點到直線ly=k(x-3-)的距離為,求直線l的斜率k的取值范圍.

查看答案和解析>>

已知定義在R上的奇函數(shù)f(x),設(shè)其導(dǎo)函數(shù)為f′(x),當(dāng)x∈(-∞,0)時,恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-1)的實數(shù)x的取值范圍是                                                                      (  )

A.(-1,2)                         B.(-1,)

C.(,2)                         D.(-2,1)

查看答案和解析>>

下列命題:

①函數(shù)y=sin(x)在[0,π]上是減函數(shù);②點A(1,1)、B(2,7)在直線3xy=0兩側(cè);③數(shù)列{an}為遞減的等差數(shù)列,a1a5=0,設(shè)數(shù)列{an}的前n項和為Sn,則當(dāng)n=4時,Sn取得最大值;

④定義運算a1b2a2b1,則函數(shù)f(x)=的圖像在點(1,)處的切線方程是6x-3y-5=0.其中正確命題的序號是________.(把所有正確命題的序號都寫上).

查看答案和解析>>

已知定義在R上的奇函數(shù)f(x),設(shè)其導(dǎo)函數(shù)為f′(x),當(dāng)x∈(-∞,0]時,恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-1)的實數(shù)x的取值范圍是(  ) 

A.(-2,1)               B.

C.                D.(-1,2)

查看答案和解析>>

1.D

2.C 提示:畫出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對照四個選擇支,A、B、D均可排除,故選C.

3.D

4.B 提示:由題意知,M,N,因此,),又A∩B,故集合A、B的子集中沒有相同的集合,可知M、N中沒有其他的公共元素,故正確的答案是M∩N=.

5.A   提示:由,當(dāng)時,△,

,當(dāng)時,△,且,即

所以

6.A      7.D      8.A

9.D提示:設(shè)3x2-4x-32<0的一個必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.

10.A          11.B

12.D    提示:由,又因為的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:

(1)

(2) ;綜合(1)、(2)可得

二、填空題

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6.        16. ①④


同步練習(xí)冊答案