[點(diǎn)評(píng)]集合中的可以用任何一個(gè)字母表示.只要這個(gè)字母是整數(shù)就可.即等.這就是集合中的元素?zé)o序性的體現(xiàn).這和數(shù)列中的項(xiàng)有確切的位置是不同的.易錯(cuò)點(diǎn)二 集合的運(yùn)算 查看更多

 

題目列表(包括答案和解析)

某籃球運(yùn)動(dòng)員在10場(chǎng)比賽中的得分用莖葉圖表示如圖,則該運(yùn)動(dòng)員的平均得分為
21.6
21.6

查看答案和解析>>

某籃球運(yùn)動(dòng)員在10場(chǎng)比賽中的得分用莖葉圖表示如圖,則該運(yùn)動(dòng)員的平均得分為_(kāi)_____.
精英家教網(wǎng)

查看答案和解析>>

某籃球運(yùn)動(dòng)員在10場(chǎng)比賽中的得分用莖葉圖表示如圖,則該運(yùn)動(dòng)員的平均得分為(    )

查看答案和解析>>

已知數(shù)列{}中,=1,前n項(xiàng)和。

    (Ⅰ)求

    (Ⅱ)求{}的通項(xiàng)公式。

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式與數(shù)列求和的相結(jié)合的綜合運(yùn)用。

【點(diǎn)評(píng)】試題出題比較直接,沒(méi)有什么隱含的條件,只要充分利用通項(xiàng)公式和前n項(xiàng)和的關(guān)系式變形就可以得到結(jié)論。

 

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng)

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

1.D

2.C 提示:畫(huà)出滿足條件A∪B=A∪C的文氏圖,可知有五種情況,以觀察其中一種,如圖,顯然只要圖中陰影部分相等,B、C未必要相等,條件A∪B=A∪C仍可滿足,對(duì)照四個(gè)選擇支,A、B、D均可排除,故選C.

3.D

4.B 提示:由題意知,M,N,因此,),又A∩B,故集合A、B的子集中沒(méi)有相同的集合,可知M、N中沒(méi)有其他的公共元素,故正確的答案是M∩N=.

5.A   提示:由,當(dāng)時(shí),△

,當(dāng)時(shí),△,且,即

所以

6.A      7.D      8.A

9.D提示:設(shè)3x2-4x-32<0的一個(gè)必要不充分條件是為Q,P=.由題意知:P能推出Q,但Q不能推出P.也可理解為:PQ.

10.A          11.B

12.D    提示:由,又因?yàn)?sub>的充分而不必要條件,所以,即?芍狝=或方程的兩根要在區(qū)間[1,2]內(nèi),也即以下兩種情況:

(1);

(2) ;綜合(1)、(2)可得。

二、填空題

13.3              14.     w.w.w.k.s.5.u.c.o.m

15. -2≤x≤6 提示:由[x]2-3[x]-10≤0得-2≤[x] ≤5,則-2≤x≤6.        16. ①④


同步練習(xí)冊(cè)答案