已知數(shù)列{}中,=1,前n項(xiàng)和。

    (Ⅰ)求

    (Ⅱ)求{}的通項(xiàng)公式。

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式與數(shù)列求和的相結(jié)合的綜合運(yùn)用。

【點(diǎn)評(píng)】試題出題比較直接,沒(méi)有什么隱含的條件,只要充分利用通項(xiàng)公式和前n項(xiàng)和的關(guān)系式變形就可以得到結(jié)論。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中a1=1,a2=2,數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)整數(shù)n>1時(shí),Sn+1+Sn-1=2(Sn+S1)都成立,則數(shù)列{
1
anan+1
}的前n項(xiàng)和為
3n-1
4n
3n-1
4n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中a1=1,an+1=
an
2an+1
(n∈N+).
(1)求證:數(shù)列{
1
an
}
為等差數(shù)列;
(2)設(shè)bn=an•an+1(n∈N+),數(shù)列{bn}的前n項(xiàng)和為Sn,求滿足Sn
1005
2012
的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中a1=1,a2=2,當(dāng)整數(shù)n>1時(shí),Sn+1+Sn-1=2(Sn+S1)都成立,則S15=
211
211

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中a1=1,an+1-an=3,則通項(xiàng)公式an=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中a1=1,且點(diǎn)(an,an+1)(n∈N*)在函數(shù)y=x+1的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=
an   (n為奇數(shù))
2n(n為偶數(shù))
(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案