(本題滿分12分,任選一題作答.)
Ⅰ、如圖①,在平面直角坐標系中,O為坐標原點,邊長為5的正三角形OAB的OA邊在x軸的正半軸上.點C、D同時從點O出發(fā),點C以1單位長/秒的速度向點A運動,點D以2個單位長/秒的速度沿折線OBA運動.設運動時間為t秒,0<t<5.
(1)當
0<t<時,證明DC⊥OA;
(2)若△OCD的面積為S,求S與t的函數(shù)關系式;
(3)以點C為中心,將CD所在的直線順時針旋轉(zhuǎn)60°交AB邊于點E,若以O、C、E、D為頂點的四邊形是梯形,求點E的坐標.
Ⅱ、(1)如圖Ⅱ-1,已知△ABC,過點A畫一條平分三角形面積的直線;
(2)如圖Ⅱ-2,已知l
1∥l
2,點E,F(xiàn)在l
1上,點G,H在l
2上,試說明△EGO與△FHO面積相等.
(3)如圖Ⅱ-3,點M在△ABC的邊上,過點M畫一條平分三角形面積的直線.