(Ⅱ)若的面積是.且.求. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知雙曲線C的方程為,離心率,頂點到漸近線的距離為。

(I)求雙曲線C的方程;                                

(II)如圖,P是雙曲線C上一點,A,B兩點在雙曲線C的兩條漸近線上,且分別位于第一、二象限,若,求面積的取值范圍。   

查看答案和解析>>

(本小題滿分13分)

如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個不同點,且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點,都與平面ABCD垂直,

(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

 

查看答案和解析>>

(本小題共14分)

    已知橢圓的中點在原點O,焦點在x軸上,點是其左頂點,點C在橢圓上且

   (I)求橢圓的方程;

   (II)若平行于CO的直線和橢圓交于MN兩個不同點,求面積的最大值,并求此時直線的方程.

查看答案和解析>>

(本小題滿分12分)

分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求的取值范圍;

(2)設過定點的直線與橢圓交于不同的兩點M、N,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍.

(3)設是它的兩個頂點,直線AB相交于點D,與橢圓相交于EF兩點.求四邊形面積的最大值.

查看答案和解析>>

(本小題滿分12分)

如圖,在三棱錐DABC中,已知△BCD是正三角

形,AB⊥平面BCD,ABBCa,EBC的中點,

F在棱AC上,且AF=3FC

(1)求三棱錐DABC的表面積;

(2)求證AC⊥平面DEF;

(3)若MBD的中點,問AC上是否存在一點N

使MN∥平面DEF?若存在,說明點N的位置;若不

存在,試說明理由.

查看答案和解析>>

 

一.選擇題:本大題共12小題,每小題5分,共60分。

(1)B       (2)A        (3)B      (4)A     (5)C       (6)D

(7)A       (8)C        (9)B      (10)A    (11)D      (12)B

 

二.填空題:本大題共4小題,每小題5分,共20分。

(13)6ec8aac122bd4f6e      (14)6ec8aac122bd4f6e      (15)6ec8aac122bd4f6e     

(16)6ec8aac122bd4f6e

三.解答題:本大題共6小題,共70分,解答應寫出文字說明,證明過程或演算步驟。

(17)(本小題滿分10分)

(Ⅰ)解法一:由正弦定理得6ec8aac122bd4f6e.

故      6ec8aac122bd4f6e

又      6ec8aac122bd4f6e

故      6ec8aac122bd4f6e

即      6ec8aac122bd4f6e,

故      6ec8aac122bd4f6e.

因為    6ec8aac122bd4f6e,

故      6ec8aac122bd4f6e

      又      6ec8aac122bd4f6e為三角形的內(nèi)角,

所以    6ec8aac122bd4f6e.                    ………………………5分

解法二:由余弦定理得  6ec8aac122bd4f6e.

      將上式代入6ec8aac122bd4f6e    整理得6ec8aac122bd4f6e

      故      6ec8aac122bd4f6e,  

又      6ec8aac122bd4f6e為三角形內(nèi)角,

所以    6ec8aac122bd4f6e.                    ………………………5分

(Ⅱ)解:因為6ec8aac122bd4f6e

故      6ec8aac122bd4f6e

由已知  6ec8aac122bd4f6e

6ec8aac122bd4f6e 

又因為  6ec8aac122bd4f6e.

得      6ec8aac122bd4f6e,

所以    6ec8aac122bd4f6e,

解得    6ec8aac122bd4f6e.    ………………………………………………10分

 

6ec8aac122bd4f6e(18)(本小題滿分12分)

 

(Ⅰ)證明:

             ∵6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e,

             ∴6ec8aac122bd4f6e

             又∵底面6ec8aac122bd4f6e是正方形,

       ∴6ec8aac122bd4f6e

             又∵6ec8aac122bd4f6e

       ∴6ec8aac122bd4f6e6ec8aac122bd4f6e

       又∵6ec8aac122bd4f6e6ec8aac122bd4f6e,

       ∴平面6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e.    ………………………………………6分

(Ⅱ)解法一:如圖建立空間直角坐標系6ec8aac122bd4f6e

6ec8aac122bd4f6e,則6ec8aac122bd4f6e,在6ec8aac122bd4f6e中,6ec8aac122bd4f6e.

6ec8aac122bd4f6e、6ec8aac122bd4f6e、6ec8aac122bd4f6e、6ec8aac122bd4f6e、6ec8aac122bd4f6e、6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e的中點,6ec8aac122bd4f6e,

6ec8aac122bd4f6e

        設6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的一個法向量.

6ec8aac122bd4f6e則由6ec8aac122bd4f6e 可求得6ec8aac122bd4f6e.

由(Ⅰ)知6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的一個法向量,

6ec8aac122bd4f6e

6ec8aac122bd4f6e,即6ec8aac122bd4f6e.

∴二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e. ………………………………………12分

  解法二:

6ec8aac122bd4f6e         設6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

6ec8aac122bd4f6e中,6ec8aac122bd4f6e.

6ec8aac122bd4f6e,連接6ec8aac122bd4f6e,過6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e,

連結(jié)6ec8aac122bd4f6e,由(Ⅰ)知6ec8aac122bd4f6e6ec8aac122bd4f6e.

6ec8aac122bd4f6e在面6ec8aac122bd4f6e上的射影為6ec8aac122bd4f6e,

6ec8aac122bd4f6e

6ec8aac122bd4f6e為二面角6ec8aac122bd4f6e的平面角.

6ec8aac122bd4f6e中,6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e,

6ec8aac122bd4f6e.

6ec8aac122bd4f6e.

即二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e. …………………………………12分

 

(19)(本小題滿分12分)

(Ⅰ)解:設6ec8aac122bd4f6e6ec8aac122bd4f6e兩項技術(shù)指標達標的概率分別為6ec8aac122bd4f6e、6ec8aac122bd4f6e

由題意得:6ec8aac122bd4f6e               …………2分

6ec8aac122bd4f6e

即一個零件經(jīng)過檢測為合格品的概率為6ec8aac122bd4f6e.             …………6分

(Ⅱ)設該工人一個月生產(chǎn)的20件新產(chǎn)品中合格品有6ec8aac122bd4f6e件,獲得獎金6ec8aac122bd4f6e元,則6ec8aac122bd4f6e

6ec8aac122bd4f6e        ………………8分

6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e,               ………………10分

6ec8aac122bd4f6e

即該工人一個月獲得獎金的數(shù)學期望是800元.      ………………12分

(20)(本小題滿分12分)

解:(Ⅰ)設雙曲線方程為6ec8aac122bd4f6e,6ec8aac122bd4f6e,

6ec8aac122bd4f6e,6ec8aac122bd4f6e及勾股定理得6ec8aac122bd4f6e,

由雙曲線定義得 6ec8aac122bd4f6e

6ec8aac122bd4f6e.                ………………………………………5分

(Ⅱ)6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e,故雙曲線的兩漸近線方程為6ec8aac122bd4f6e

因為6ec8aac122bd4f6e6ec8aac122bd4f6e, 且6ec8aac122bd4f6e6ec8aac122bd4f6e同向,故設6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e,

6ec8aac122bd4f6e

6ec8aac122bd4f6e的面積6ec8aac122bd4f6e,所以6ec8aac122bd4f6e

可得6ec8aac122bd4f6e6ec8aac122bd4f6e軸的交點為6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e交于點6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e交于點6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e;由6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e,

從而6ec8aac122bd4f6e

6ec8aac122bd4f6e的取值范圍是6ec8aac122bd4f6e.  …………………………12分

(21)(本小題滿分12分)

解:(Ⅰ)6ec8aac122bd4f6e,

6ec8aac122bd4f6e

又因為函數(shù)6ec8aac122bd4f6e6ec8aac122bd4f6e上為增函數(shù),

  6ec8aac122bd4f6e6ec8aac122bd4f6e上恒成立,等價于

  6ec8aac122bd4f6e6ec8aac122bd4f6e上恒成立.

6ec8aac122bd4f6e

故當且僅當6ec8aac122bd4f6e時取等號,而6ec8aac122bd4f6e,

  6ec8aac122bd4f6e的最小值為6ec8aac122bd4f6e.         ………………………………………6分

(Ⅱ)由已知得:函數(shù)6ec8aac122bd4f6e為奇函數(shù),

  6ec8aac122bd4f6e, 6ec8aac122bd4f6e,  ………………………………7分

6ec8aac122bd4f6e.

6ec8aac122bd4f6e切點為6ec8aac122bd4f6e,其中6ec8aac122bd4f6e,

則切線6ec8aac122bd4f6e的方程為:6ec8aac122bd4f6e   ……………………8分

6ec8aac122bd4f6e,

6ec8aac122bd4f6e.

6ec8aac122bd4f6e

6ec8aac122bd4f6e,

6ec8aac122bd4f6e,

6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e,由題意知,6ec8aac122bd4f6e

從而6ec8aac122bd4f6e.

6ec8aac122bd4f6e

6ec8aac122bd4f6e,

6ec8aac122bd4f6e.                    ………………………………………12分

(22)(本小題滿分12分)

(Ⅰ)解: 由6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e.               …………………………3分

(Ⅱ)由(Ⅰ)歸納得6ec8aac122bd4f6e6ec8aac122bd4f6e, ………………………4分

用數(shù)學歸納法證明:

①當6ec8aac122bd4f6e時,6ec8aac122bd4f6e成立.

②假設6ec8aac122bd4f6e時,6ec8aac122bd4f6e成立,

那么6ec8aac122bd4f6e6ec8aac122bd4f6e

所以當6ec8aac122bd4f6e時,等式也成立.

由①、②得6ec8aac122bd4f6e6ec8aac122bd4f6e對一切6ec8aac122bd4f6e成立.  ……………8分

(Ⅲ)證明: 設6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

所以6ec8aac122bd4f6e6ec8aac122bd4f6e上是增函數(shù).

6ec8aac122bd4f6e

6ec8aac122bd4f6e

因為6ec8aac122bd4f6e,

6ec8aac122bd4f6e

6ec8aac122bd4f6e=6ec8aac122bd4f6e.…………12分

 

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習冊答案