解:(1) , (2) 由.得當(dāng)時(shí).取得最小值-2 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對(duì)任意的成立,求實(shí)數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

,得

當(dāng)x變化時(shí),的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即

,得

①當(dāng)時(shí),上恒成立。因此上單調(diào)遞減.從而對(duì)于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時(shí),,對(duì)于,故上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.

當(dāng)時(shí),

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,

 

查看答案和解析>>

=,=(sinωx,0),其中ω>0,記函數(shù)f(x)=(+)•+k.
(1)若f(x)圖象中相鄰兩條對(duì)稱軸間的距離不小于,求ω的取值范圍.
(2)若f(x)的最小正周期為π,且當(dāng)x時(shí),f(x)的最大值是,求f(x)的解析式,并說(shuō)明如何由y=sinx的圖象變換得到y(tǒng)=f(x)的圖象.

查看答案和解析>>

先閱讀第(1)題的解法,再解決第(2)題:
(1)已知向量
a
=(3,4),
b
=(x,y),
a
b
=1
,求x2+y2的最小值.
解:由|
a
b
|≤|
a
|•|
b
|
1≤
x2+y2
,當(dāng)
b
=(
3
25
,
4
25
)
時(shí)取等號(hào),
所以x2+y2的最小值為
1
25

(2)已知實(shí)數(shù)x,y,z滿足2x+3y+z=1,則x2+y2+z2的最小值為
1
14
1
14

查看答案和解析>>

已知

(1)求函數(shù)上的最小值

(2)對(duì)一切的恒成立,求實(shí)數(shù)a的取值范圍

(3)證明對(duì)一切,都有成立

【解析】第一問(wèn)中利用

當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,

第二問(wèn)中,,則設(shè),

單調(diào)遞增,,單調(diào)遞減,,因?yàn)閷?duì)一切,恒成立, 

第三問(wèn)中問(wèn)題等價(jià)于證明,,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切,都有成立

解:(1)當(dāng)時(shí),單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,

                 …………4分

(2),則設(shè),

,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷?duì)一切恒成立,                                             …………9分

(3)問(wèn)題等價(jià)于證明,,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切,都有成立

 

查看答案和解析>>

(文)若數(shù)學(xué)公式=(數(shù)學(xué)公式cosωx,sinωx),數(shù)學(xué)公式=(sinωx,0),其中ω>0,記函數(shù)f(x)=(數(shù)學(xué)公式+數(shù)學(xué)公式)•數(shù)學(xué)公式+k.
(1)若函數(shù)f(x)的圖象中相鄰兩條對(duì)稱軸間的距離不小于數(shù)學(xué)公式,求ω的取值范圍;
(2)若函數(shù)f(x)的最小正周期為π,且當(dāng)x∈[-數(shù)學(xué)公式,數(shù)學(xué)公式]時(shí),函數(shù)f(x)的最大值是數(shù)學(xué)公式,求函數(shù)f(x)的解析式,并說(shuō)明如何由函數(shù)y=sinx的圖象變換得到函數(shù)y=f(x)的圖象.

查看答案和解析>>


同步練習(xí)冊(cè)答案