點與圓的位置關系:已知點及圓.(1)點M在圓C外,(2)點M在圓C內 ,(3)點M在圓C上 . 如點P2+y2=1的內部,則a的取值范圍是 查看更多

 

題目列表(包括答案和解析)

已知點),過點作拋物線的切線,切點分別為(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質的運用。直線與圓的位置關系的運用。

中∵直線與曲線相切,且過點,∴,利用求根公式得到結論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數(shù)的性質圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點,∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率

∴直線的方程為:,又

,即. -----------------7分

∵點到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,    ………10分

,

當且僅當,即,時取等號.

故圓面積的最小值

 

查看答案和解析>>

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0.
(1)求證:直線l恒過定點;
(2)試判斷直線l與圓C的位置關系;
(3)當直線l與圓C相交時,求直線l被圓C截得的弦何時最長,何時最短?并求截得的弦長最短時m的值以及最短長度.

查看答案和解析>>

已知直線l1:(2m+1)x+(m+1)y-7m-5=0(m∈R)和直線l1:x+3y-5=0,圓C:x2+y2-2x-4y=0.
(1)當m為何值時,l1∥l2?
(2)是否存在點P,使得不論m為何值,直線l1都經過點P?若存在,求出點P的坐標,若不存在,請說明理由;
(3)試判斷直線l1與圓C的位置關系.若相交,求截得的弦長最短時m的值以及最短長度;若相切,求切點的坐標;若相離,求圓心到直線l1的距離的最大值.

查看答案和解析>>

已知圓C:x2+y2-2x-4y-20=0,直線l:(2m+1)x+(m+1)y-7m-4=0,m∈R.
(I)直線l是否過定點,有則求出來?判斷直線與圓的位置關系及理由?
(II)求直線被圓C截得的弦長L的取值范圍及L最短時弦所在直線的方程.

查看答案和解析>>

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0,m∈R
(1)直線l是否過定點,有則求出來?判斷直線與圓的位置關系及理由?
(2)求直線被圓C截得的弦長最小時l的方程.

查看答案和解析>>


同步練習冊答案