2.探索并掌握等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和的公式, 查看更多

 

題目列表(包括答案和解析)

類比是一個(gè)偉大的引路人.我們知道,等差數(shù)列和等比數(shù)列有許多相似的性質(zhì),請(qǐng)閱讀下表并根據(jù)等差數(shù)列的結(jié)論,類似的得出等比數(shù)列的兩個(gè)結(jié)論:
bn=
 
,dn=
 

等差數(shù)列{an} 等比數(shù)列{bn}
an=a1+(n-1)d bn=b1qn-1
an=am+(n-m)d bn
 
若cn=
a1+a2a3+∧+an
n
,
則數(shù)列{cn}為等差數(shù)列
若dn=
 

則數(shù)列{dn}為等比數(shù)列

查看答案和解析>>

類比是一個(gè)偉大的引路人.我們知道,等差數(shù)列和等比數(shù)列有許多相似的性質(zhì),請(qǐng)閱讀下表并根據(jù)等差數(shù)列的結(jié)論,類似的得出等比數(shù)列的兩個(gè)結(jié)論:
bn=______,dn=______
等差數(shù)列{an} 等比數(shù)列{bn}
an=a1+(n-1)d bn=b1qn-1
an=am+(n-m)d bn______
若cn=
a1+a2a3+∧+an
n
,
則數(shù)列{cn}為等差數(shù)列
若dn=______,
則數(shù)列{dn}為等比數(shù)列

查看答案和解析>>

已知等差數(shù)列{an}的首項(xiàng)為4,公差為4,其前n項(xiàng)和為Sn,則數(shù)列 {}的前n項(xiàng)和為(  )

 

A.

B.

C.

D.

考點(diǎn):

數(shù)列的求和;等差數(shù)列的性質(zhì).

專題:

等差數(shù)列與等比數(shù)列.

分析:

利用等差數(shù)列的前n項(xiàng)和即可得出Sn,再利用“裂項(xiàng)求和”即可得出數(shù)列 {}的前n項(xiàng)和.

解答:

解:∵Sn=4n+=2n2+2n,

∴數(shù)列 {}的前n項(xiàng)和===

故選A.

點(diǎn)評(píng):

熟練掌握等差數(shù)列的前n項(xiàng)和公式、“裂項(xiàng)求和”是解題的關(guān)鍵.

查看答案和解析>>

類比是一個(gè)偉大的引路人.我們知道,等差數(shù)列和等比數(shù)列有許多相似的性質(zhì),請(qǐng)閱讀下表并根據(jù)等差數(shù)列的結(jié)論,類似的得出等比數(shù)列的兩個(gè)結(jié)論:
bn=    ,dn=   
等差數(shù)列{an}等比數(shù)列{bn}
an=a1+(n-1)dbn=b1qn-1
an=am+(n-m)dbn   
若cn=,
則數(shù)列{cn}為等差數(shù)列
若dn=    ,
則數(shù)列{dn}為等比數(shù)列

查看答案和解析>>

類比是一個(gè)偉大的引路人.我們知道,等差數(shù)列和等比數(shù)列有許多相似的性質(zhì),請(qǐng)閱讀下表并根據(jù)等差數(shù)列的結(jié)論,類似的得出等比數(shù)列的兩個(gè)結(jié)論:
bn=    ,dn=   
等差數(shù)列{an}等比數(shù)列{bn}
an=a1+(n-1)dbn=b1qn-1
an=am+(n-m)dbn   
若cn=,
則數(shù)列{cn}為等差數(shù)列
若dn=    ,
則數(shù)列{dn}為等比數(shù)列

查看答案和解析>>


同步練習(xí)冊(cè)答案