22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對(duì)任意不小于2的正整數(shù)恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過、作軌跡的切線,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

D

D

C

A

C

B

A

C

C

C

二、填空題:本大題共4小題,每小題4分,共16分。把答案填在題中橫線上。

13.13     14.       15.2           16.1005

三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分12分)

解(I)

      

  (Ⅱ)由

        

18.(本小題滿分12分)

解(I)記事件A;射手甲剩下3顆子彈,

      

(Ⅱ)記事件甲命中1次10環(huán),乙命中兩次10環(huán),事件;甲命中2次10環(huán),乙命中1次10環(huán),則四次射擊中恰有三次命中10環(huán)為事件

(Ⅲ)的取值分別為16,17,18,19,20,

     

19.(本題滿分12分)

證(Ⅰ)因?yàn)?sub>側(cè)面,故

 在中,   由余弦定理有

  故有 

  而     且平面

     

(Ⅱ)由

從而  且

 不妨設(shè)  ,則,則

  則

中有   從而(舍負(fù))

的中點(diǎn)時(shí),

 法二:以為原點(diǎn)軸,設(shè),則       由得    即

      

      化簡整理得       或

     當(dāng)時(shí)重合不滿足題意

     當(dāng)時(shí)的中點(diǎn)

     故的中點(diǎn)使

 (Ⅲ)取的中點(diǎn)的中點(diǎn),的中點(diǎn),的中點(diǎn)

 連,連,連

 連,且為矩形,

   故為所求二面角的平面角

中,

法二:由已知, 所以二面角的平面角的大小為向量的夾角

因?yàn)?sub>  

 

20.(本小題滿分12分)

(1)由

        切線的斜率切點(diǎn)坐標(biāo)(2,5+

        所求切線方程為

   (2)若函數(shù)為上單調(diào)增函數(shù),

        則上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述問題等價(jià)于

        而為在上的減函數(shù),

        則于是為所求

21.(本小題滿分12分)

解:(1)

        ∵直線l:x-y+2=0與圓x2+y2=b2相切,

=b,∴b=,b2=2,∴=3.                                                    

∴橢圓C1的方程是

(2)∵M(jìn)P=MF,∴動(dòng)點(diǎn)M到定直線l1:x=-1的距離等于它的定點(diǎn)F2(1,0)的距離,

∴動(dòng)點(diǎn)M的軌跡是以l1為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線,∴點(diǎn)M的軌跡C2的方程為

(3)Q(0,0),設(shè),

,

得  ,

化簡得,

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

,又∵y­22≥64,

∴當(dāng).    故的取值范圍是.

22.(本小題滿分14分)

解(I)由題意,令

      

 (Ⅱ)

      

  (1)當(dāng)時(shí),成立:

  (2)假設(shè)當(dāng)時(shí)命題成立,即

       當(dāng)時(shí),

      

 

 

 


同步練習(xí)冊答案