[解析] 直線的普通方程為.曲線的普通方程 ∴ 查看更多

 

題目列表(包括答案和解析)

如圖,已知點,圓是以為直徑的圓,直線,(為參數(shù)).

(1)以坐標原點為極點,軸正半軸為極軸,建立極坐標系,求圓的極坐標方程;

(2)過原點作直線的垂線,垂足為,若動點滿足,當變化時,求點軌跡的參數(shù)方程,并指出它是什么曲線.

【解析】(1)圓C的普通方程為,    (2’)

極坐標方程為。        (4’)

(2)直線l的普通方程為,        (5’)

                      (7’)

           (9’)

點M軌跡的參數(shù)方程為,圖形為圓

 

查看答案和解析>>

在平面直角坐標系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(2cosθ-sinθ)=6.

(Ⅰ)將曲線C1上的所有點的橫坐標,縱坐標分別伸長為原來的、2倍后得到曲線C2,試寫出直線l的直角坐標方程和曲線C2的參數(shù)方程.

(Ⅱ)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

【解析】(Ⅰ)根據(jù)極坐標與普通方程的互化,將直線l:ρ(2cosθ-sinθ)=6化為普通方程,C2的方程為,化為普通方程;(Ⅱ)利用點到直線的距離公式表示出距離,求最值.

 

查看答案和解析>>


同步練習冊答案