1.關(guān)于直線對稱問題: (1)關(guān)于l :Ax +By +C =0對稱問題:不論點.直線與曲線關(guān)于l 對稱問題總可以轉(zhuǎn)化為點關(guān)于l 對稱問題.因為對稱是由平分與垂直兩部分組成.如求P(x0 .y0)關(guān)于l :Ax +By +C =0對稱點Q(x1 .y1).有=-(1)與A·+B·+C =0. (2)解出x1 與y1 ,若求C1 :曲線f(x .y)=0關(guān)于l :Ax +By +C1 =0對稱的曲線C2 .由上面的中求出x0 =g1(x1 .y1)與y0 =g2(x1 .y1).然后代入C1 :f [g1(x1 .y1).g2(x2 .y2)]=0.就得到關(guān)于l 對稱的曲線C2 方程:f [g1(x .y).g2(x .y)]=0. (3)若l :Ax +By +C =0中的x .y 項系數(shù)|A|=1.|B |=1.就可以用直接代入解之.尤其是選擇填空題.如曲線C1 :y2 =4 x -2關(guān)于l :x -y -4=0對稱的曲線l2 的方程為:(x -4) 2 =4(y +4)-2.即y 用x -4代.x 用y +4代.這樣就比較簡單了. (4)解有關(guān)入射光線與反射光線問題就可以用對稱問題來解決. 點與圓位置關(guān)系:P(x0 .y0)和圓C :(x -a) 2 +(y -b) 2 =r2. ①點P 在圓C 外有(x0 -a) 2 +(y0 -b) 2 >r2, ②點P 在圓上:(x0 -a) 2 +(y0 -b) 2 =r2, ③點P 在圓內(nèi):(x0 -a) 2 +(y0 -b) 2 <r2 . 查看更多

 

題目列表(包括答案和解析)

(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)在曲線y=x-
2
x
上存在兩個不同點關(guān)于直線y=x對稱,求出其坐標(biāo);若曲線y=x+
p
x
(p≠0)上存在兩個不同點關(guān)于直線y=x對稱,求實數(shù)p的范圍;
(3)當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并取a=
1
16
a=
2
2
加以研究.當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
1
e
]
上單調(diào)遞減,在區(qū)間[
1
e
,1)
上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

(2007•楊浦區(qū)二模)(文)設(shè)F1、F2分別為橢圓C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到兩個焦點的距離之和等于4,求橢圓C的方程.
(2)如果點P是(1)中所得橢圓上的任意一點,且
PF1
PF2
=0
,求△PF1F2的面積.
(3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點對稱的兩點,點Q是橢圓上任意一點,且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點Q位置無關(guān)的定值.試問:雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過對上面問題進一步研究,請你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說明理由.

查看答案和解析>>

(2006•浦東新區(qū)模擬)(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)若曲線y=x+
p
x
(p≠0)上存在兩個不同點關(guān)于直線y=x對稱,求實數(shù)p的取值范圍;
(3)當(dāng)0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
1
e
]
上單調(diào)遞減,在區(qū)間[
1
e
,1)
上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

查看答案和解析>>

如圖,l1,l2是通過某市開發(fā)區(qū)中心0的兩條南北和東西走向的道路,連接M、N兩地的鐵路是一段拋物線弧,它所在的拋物線關(guān)于直線L1對稱.M到L1、L2的距離分別是2 km、4km,N到L1、L2的距離分別是3km、9km.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線弧MN的方程.(2)該市擬在點0的正北方向建設(shè)一座工廠,考慮到環(huán)境問題,要求廠址到點0的距離大于5km而不超過8km,并且鐵路上任意一點到工廠的距離不能小于
6
km.求此廠離點0的最近距離.(注:工廠視為一個點)

查看答案和解析>>

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)為,其中.設(shè).

(1)若,,求方程在區(qū)間內(nèi)的解集;

(2)若點是過點且法向量為的直線上的動點.當(dāng)時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)

查看答案和解析>>


同步練習(xí)冊答案