向量與平面平行:如果向量所在直線在平面內(nèi)或與平面平行.則稱向量與平面平行.注意與直線與平面平行的區(qū)別. 共面向量:平行于同一平面的向量叫做共面向量.空間任意兩個向量都共面(包括兩條異面直線上的向量).空間三個向量不一定共面.不共面的三個向量可構(gòu)成空間的一個基底. 共面向量定理:如果兩個向量.不共線.則向量與向量.共面的充要條件是存在實數(shù)對x,y.使得=x+y. 共面向量定理的推論:空間一點P位于平面MAB內(nèi)的充要條件是存在有序?qū)崝?shù)對x,y,使或?qū)臻g任一點O.有 =.這也是證四點共面的方法. 查看更多

 

題目列表(包括答案和解析)

隨著環(huán)保理念的深入,用建筑鋼材余料創(chuàng)作城市雕塑逐漸流行.下圖是其中一個抽象派雕塑的設(shè)計圖.圖中α表示水平地面,線段AB表示的鋼管固定在α上;為了美感,需在焊接時保證:線段AC表示的鋼管垂直于α,BD⊥AB,且保持BD與AC異面.
(1)若收集到的余料長度如下:AC=BD=24(單位長度),AB=7,CD=25,按現(xiàn)在手中的材料,求BD與α應(yīng)成的角;
(2)設(shè)計師想在AB,CD中點M,N處再焊接一根連接管,然后掛一個與AC,BD同時平
行的平面板裝飾物.但他擔(dān)心此設(shè)計不一定能實現(xiàn).請你替他打消疑慮:無論AB,CD多長,焊接角度怎樣,一定存在一個過MN的平面與AC,BD同時平行(即證明向量
MN
AC
BD
共面,寫出證明過程);
(3)如果事先能收集確定的材料只有AC=BD=24,請?zhí)嬖O(shè)計師打消另一個疑慮:即MN要準(zhǔn)備多長不用視AB,CD長度而定,只與θ有關(guān)(θ為設(shè)計的BD與α所成的角),寫出MN與θ的關(guān)系式,并幫他算出無論如何設(shè)計MN都一定夠用的長度.

查看答案和解析>>

隨著環(huán)保理念的深入,用建筑鋼材余料創(chuàng)作城市雕塑逐漸流行.下圖是其中一個抽象派雕塑的設(shè)計圖.圖中α表示水平地面,線段AB表示的鋼管固定在α上;為了美感,需在焊接時保證:線段AC表示的鋼管垂直于α,BD⊥AB,且保持BD與AC異面.
(1)若收集到的余料長度如下:AC=BD=24(單位長度),AB=7,CD=25,按現(xiàn)在手中的材料,求BD與α應(yīng)成的角;
(2)設(shè)計師想在AB,CD中點M,N處再焊接一根連接管,然后掛一個與AC,BD同時平
行的平面板裝飾物.但他擔(dān)心此設(shè)計不一定能實現(xiàn).請你替他打消疑慮:無論AB,CD多長,焊接角度怎樣,一定存在一個過MN的平面與AC,BD同時平行(即證明向量,共面,寫出證明過程);
(3)如果事先能收集確定的材料只有AC=BD=24,請?zhí)嬖O(shè)計師打消另一個疑慮:即MN要準(zhǔn)備多長不用視AB,CD長度而定,只與θ有關(guān)(θ為設(shè)計的BD與α所成的角),寫出MN與θ的關(guān)系式,并幫他算出無論如何設(shè)計MN都一定夠用的長度.

查看答案和解析>>

隨著環(huán)保理念的深入,用建筑鋼材余料創(chuàng)作城市雕塑逐漸流行.下圖是其中一個抽象派雕塑的設(shè)計圖.圖中α表示水平地面,線段AB表示的鋼管固定在α上;為了美感,需在焊接時保證:線段AC表示的鋼管垂直于α,BD⊥AB,且保持BD與AC異面.
(1)若收集到的余料長度如下:AC=BD=24(單位長度),AB=7,CD=25,按現(xiàn)在手中的材料,求BD與α應(yīng)成的角;
(2)設(shè)計師想在AB,CD中點M,N處再焊接一根連接管,然后掛一個與AC,BD同時平
行的平面板裝飾物.但他擔(dān)心此設(shè)計不一定能實現(xiàn).請你替他打消疑慮:無論AB,CD多長,焊接角度怎樣,一定存在一個過MN的平面與AC,BD同時平行(即證明向量,共面,寫出證明過程);
(3)如果事先能收集確定的材料只有AC=BD=24,請?zhí)嬖O(shè)計師打消另一個疑慮:即MN要準(zhǔn)備多長不用視AB,CD長度而定,只與θ有關(guān)(θ為設(shè)計的BD與α所成的角),寫出MN與θ的關(guān)系式,并幫他算出無論如何設(shè)計MN都一定夠用的長度.

查看答案和解析>>


同步練習(xí)冊答案