平面向量是高中數學的新增內容.也是新高考的一個亮點. 向量知識.向量觀點在數學.物理等學科的很多分支有著廣泛的應用.它具有代數形式和幾何形式的“雙重身份 .能融數形與一體.能與中學數學教學內容的的許多主干知識綜合.形成知識交匯點.而在高中數學體系中.解析幾何占有著很重要的地位.有些問題用常規(guī)方法去解決往往運算比較繁雜.不妨運用向量作形與數的轉化.則會大大簡化過程. 查看更多

 

題目列表(包括答案和解析)

任一個復數z=a+bi與復平面內的點________一一對應,也與平面向量________是一一對應的.

查看答案和解析>>

在中學階段,對許多特定集合(如實數集、復數集以及平面向量集等)的學習常常是以定義運算(如四則運算)和研究運算律為主要內容.現設集合A由全體二元有序實數組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=(ad+bc,bd-ac).
(1)計算:(2,3)⊙(-1,4).
(2)請用數學符號語言表述運算⊙滿足交換律,并給出證明.
(3)若“A中的元素I=(x,y)”是“對?α∈A,都有α⊙I=I⊙α=α成立”的充要條件,試求出元素I.

查看答案和解析>>

在中學階段,對許多特定集合(如實數集、復數集以及平面向量集等)的學習常常是以定義運算(如四則運算)和研究運算律為主要內容.現設集合A由全體二元有序實數組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=(
.
a-c
bd
.
,
.
da
cb
.
)

(1)計算:(2,3)⊙(-1,4);
(2)請用數學符號語言表述運算⊙滿足交換律和結合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

在中學階段,對許多特定集合(如實數集、復數集以及平面向量集等)的學習常常是以定義運算(如四則運算)和研究運算律為主要內容.現設集合A由全體二元有序實數組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=(ad+bc,bd-ac).
(1)計算:(2,3)⊙(-1,4).
(2)請用數學符號語言表述運算⊙滿足交換律,并給出證明.
(3)若“A中的元素I=(x,y)”是“對?α∈A,都有α⊙I=I⊙α=α成立”的充要條件,試求出元素I.

查看答案和解析>>

在中學階段,對許多特定集合(如實數集、復數集以及平面向量集等)的學習常常是以定義運算(如四則運算)和研究運算律為主要內容.現設集合A由全體二元有序實數組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=(
.
a-c
bd
.
,
.
da
cb
.
)

(1)計算:(2,3)⊙(-1,4);
(2)請用數學符號語言表述運算⊙滿足交換律和結合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>


同步練習冊答案