故ω=±=±(7-i).解法二:由題意.設(shè)(1+3i)z=ki.k≠0且k∈R. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

(Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

第一問中,利用當(dāng)時(shí),

因?yàn)榍悬c(diǎn)為(), 則,                 

所以在點(diǎn)()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當(dāng)時(shí),

,                                  

因?yàn)榍悬c(diǎn)為(), 則,                  

所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時(shí),上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時(shí),令,對(duì)稱軸,

上單調(diào)遞增,又    

① 當(dāng),即時(shí),上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時(shí),, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

                                   1

                              2    3

                            4     5     6

                       7    8    9    10

                  ………………………

 
把自然數(shù)按上小下大、左小右大的原則排成如圖三角形數(shù)

表(每行比上一行多一個(gè)數(shù)):設(shè)i、j∈N*)是位于

這個(gè)三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個(gè)

數(shù),如=8.若=2006,求i_____;j_____

查看答案和解析>>

已知集合A={2,7,-4m+(m+2)i}(其中i為虛數(shù)單位,m∈R),B={8,3},且AB≠∅,則m的值為________.

查看答案和解析>>

把正整數(shù)按上小下大、左小右大的原則排成如圖三角形數(shù)

表(每行比上一行多一個(gè)數(shù)):設(shè)(i、j∈N*)是位于

這個(gè)三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個(gè)數(shù),

=8.若=2006,則i、j的值分別為________ ,__________

 

查看答案和解析>>

如圖,在底面是直角梯形的四棱錐中,AD∥BC,∠ABC=90°,且,又PA⊥平面ABCD,AD=3AB=3PA=3a。

    (I)求二面角P―CD―A的正切值;w.w.w.k.s.5.u.c.o.m    

    (II)求點(diǎn)A到平面PBC的距離。

查看答案和解析>>


同步練習(xí)冊(cè)答案