由l上的點A到l′的距離為. 查看更多

 

題目列表(包括答案和解析)

點P到x軸的距離比它到點(0,1)的距離小1,稱點P的軌跡為曲線C,點M為直線l:y=-m (m>0)上任意一點,過點M作曲線C的兩條切線MA,MB,切點分別為A,B.
(1)求曲線C的軌跡方程;
(2)當M的坐標為(0,-l)時,求過M,A,B三點的圓的標準方程,并判斷直線l與此圓的位置關系;
(3)當m變化時,試探究直線l上是否存在點M,使MA⊥MB?若存在,有幾個這樣的點,若不存在,請說明理由.

查看答案和解析>>

點P到x軸的距離比它到點(0,1)的距離小1,稱點P的軌跡為曲線C,點M為直線l:y=-m (m>0)上任意一點,過點M作曲線C的兩條切線MA,MB,切點分別為A,B.
(1)求曲線C的軌跡方程;
(2)當M的坐標為(0,-l)時,求過M,A,B三點的圓的標準方程,并判斷直線l與此圓的位置關系;
(3)當m變化時,試探究直線l上是否存在點M,使MA⊥MB?若存在,有幾個這樣的點,若不存在,請說明理由.

查看答案和解析>>

點P到x軸的距離比它到點(0,1)的距離小1,稱點P的軌跡為曲線C,點M為直線l:y=-m (m>0)上任意一點,過點M作曲線C的兩條切線MA,MB,切點分別為A,B.
(1)求曲線C的軌跡方程;
(2)當M的坐標為(0,-l)時,求過M,A,B三點的圓的標準方程,并判斷直線l與此圓的位置關系;
(3)當m變化時,試探究直線l上是否存在點M,使MA⊥MB?若存在,有幾個這樣的點,若不存在,請說明理由.

查看答案和解析>>

點P到x軸的距離比它到點(0,1)的距離小1,稱點P的軌跡為曲線C,點M為直線l:y=-m(m>0)上任意一點,過點M作曲線C的兩條切線MA,MB,切點分別為A,B.
(1)求曲線C的軌跡方程;
(2)當M的坐標為(0,-l)時,求過M,A,B三點的圓的標準方程,并判斷直線l與此圓的位置關系;
(3)當m變化時,試探究直線l上是否存在點M,使MA⊥MB?若存在,有幾個這樣的點,若不存在,請說明理由.

查看答案和解析>>

動點P到點F(1,0)的距離與它到直線l:x=-1的距離相等,記點P的軌跡為曲線C1.圓C2的圓心T是曲線C1上的動點,圓C2與y軸交于M,N兩點,且|MN|=4.

(Ⅰ)求曲線C1的方程;

(Ⅱ)設點A(a,0)(a>2),若點A到點T的最短距離為a-1,試判斷直線l與圓C2的位置關系,并說明理由.

查看答案和解析>>


同步練習冊答案