由題意a=3.c=2.于是b=1. 查看更多

 

題目列表(包括答案和解析)

拓展探究題
(1)已知兩個圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應(yīng)成為所推廣命題的一個特例.推廣的命題為
已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程
已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程

(2)平面幾何中有正確命題:“正三角形內(nèi)任意一點(diǎn)到三邊的距離之和等于定值,大小為邊長的
3
2
倍”,請你寫出此命題在立體幾何中類似的真命題:
正四面體內(nèi)任意一點(diǎn)到四個面的距離之和是一個定值,大小為棱長的
6
3
正四面體內(nèi)任意一點(diǎn)到四個面的距離之和是一個定值,大小為棱長的
6
3

查看答案和解析>>

如圖,設(shè)拋物線方程為直線上任意一點(diǎn),過M引拋物線的切線,切點(diǎn)分別為A,B。

(1)求證:A,MB三點(diǎn)的橫坐標(biāo)成等差數(shù)列;

(2)已知當(dāng)M點(diǎn)的坐標(biāo)為時,,求此時拋物線的方程;

(3)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對稱點(diǎn)D在拋物線上,其中,點(diǎn)C滿足O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

如圖,設(shè)拋物線方程為直線上任意一點(diǎn),過M引拋物線的切線,切點(diǎn)分別為A,B。
(1)求證:AM,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(2)已知當(dāng)M點(diǎn)的坐標(biāo)為時,,求此時拋物線的方程;
(3)是否存在點(diǎn)M,使得點(diǎn)C關(guān)于直線AB的對稱點(diǎn)D在拋物線上,其中,點(diǎn)C滿足O為坐標(biāo)原點(diǎn)).若存在,求出所有適合題意的點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

(本小題滿分16分)

對于函數(shù)y=,x∈(0,,如果a,b,c是一個三角形的三邊長,那么,,也是一個三角形的三邊長, 則稱函數(shù)為“保三角形函數(shù)”.

對于函數(shù)y=,x∈,,如果a,b,c是任意的非負(fù)實(shí)數(shù),都有,是一個三角形的三邊長,則稱函數(shù)為“恒三角形函數(shù)”.

(1)判斷三個函數(shù)“=x,(定義域均為x∈(0,)”中,那些是“保三角形函數(shù)”?請說明理由;

(2)若函數(shù),x∈,是“恒三角形函數(shù)”,試求實(shí)數(shù)k的取值范圍;

(3)如果函數(shù)是定義在(0,上的周期函數(shù),且值域也為(0,,試證明:既不是“恒三角形函數(shù)”,也不是“保三角形函數(shù)”.

 

查看答案和解析>>

(本小題滿分16分)

對于函數(shù)y=,x∈(0,,如果a,b,c是一個三角形的三邊長,那么,也是一個三角形的三邊長, 則稱函數(shù)為“保三角形函數(shù)”.

對于函數(shù)y=,x∈,,如果a,b,c是任意的非負(fù)實(shí)數(shù),都有,是一個三角形的三邊長,則稱函數(shù)為“恒三角形函數(shù)”.

(1)判斷三個函數(shù)“=x,,(定義域均為x∈(0,)”中,那些是“保三角形函數(shù)”?請說明理由;

(2)若函數(shù),x∈,是“恒三角形函數(shù)”,試求實(shí)數(shù)k的取值范圍;

(3)如果函數(shù)是定義在(0,上的周期函數(shù),且值域也為(0,,試證明:既不是“恒三角形函數(shù)”,也不是“保三角形函數(shù)”.

 

查看答案和解析>>


同步練習(xí)冊答案