代入x2-=1.整理得(2-k2)x2-2k(2-k)x-(2-k)2-2=0 ① 查看更多

 

題目列表(包括答案和解析)

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于兩點。

(I)求曲線的方程;

(II)試證明:在軸上存在定點,使得總能被軸平分

【解析】第一問中設(shè)為曲線上的任意一點,則點在圓上,

,曲線的方程為

第二問中,設(shè)點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個公共點.

然后設(shè)點,的坐標分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點,則點在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點的坐標為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點,的坐標分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,,

,即只要  ………………12分  

時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點,使得總能被軸平分

 

查看答案和解析>>

精英家教網(wǎng)已知圓O:x2+y2=1和定點A(2,1),由圓O外一點P向圓O引切線PQ,切點為Q,且滿足|PQ|=|PA|.
(Ⅰ)求P點的軌跡方程;
(Ⅱ)求線段PQ長的最小值,并求此時PQ的斜率.

查看答案和解析>>

在計算“
1
1×2
+
1
2×3
+…+
1
n(n+1)
(n∈N)”時,某同學學到了如下一種方法:
先改寫第k項:
1
k(k+1)
=
1
k
-
1
k+1
,
由此得
1
1×2
=
1
1
-
1
2
1
2×3
=
1
2
-
1
3
,
1
4
1
n(n+1)
=
1
n
-
1
n+1
,
相加,得
1
1×2
+
1
2×3
+…+
1
n(n+1)
=1-
1
n+1
=
n
n+1

類比上述方法,請你計算“
1
1×2×3
+
1
2×3×4
+…+
1
n(n+1)(n+2)
(n∈N)”,其結(jié)果為
 

查看答案和解析>>

(1)設(shè)x∈R,比較x3與x2-x+1的大。

(2)設(shè)a>0,b>0,求證:

 

查看答案和解析>>

(1)設(shè)x∈R,比較x3與x2-x+1的大。
(2)設(shè)a>0,b>0,求證:

查看答案和解析>>


同步練習冊答案