解:(1)設(shè)F2(c.0)(c>0).P(c.y0).則=1. 查看更多

 

題目列表(包括答案和解析)

如圖,已知橢圓Γ:+=1(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的一個動點,滿足|F1Q|=2a.點P是線段F1Q與該橢圓的交點,點M在線段F2Q上,且滿足=0,||≠0.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設(shè)不過原點O的直線l與軌跡C交于A,B兩點,若直線OA,AB,OB的斜率依次成等比數(shù)列,求△OAB面積的取值范圍;
(Ⅲ)由(Ⅱ)求解的結(jié)果,試對橢圓Γ寫出類似的命題.(只需寫出類似的命題,不必說明理由)

查看答案和解析>>

請閱讀以下材料,然后解決問題:
①設(shè)橢圓的長半軸長為m短半軸長為b,則橢圓的面積為πab
②我們把由半橢圓C1
y2
b2
+
x2
c2
=1 (x≤0)與半橢圓C2
x2
a2
+
y2
b2
=1 (x≥0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0
如圖,設(shè)點F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,若△F0F1F2是邊長為1的等邊三角形,則上述“果圓”的面積為:
3
+
7
4
π
3
+
7
4
π

查看答案和解析>>

請閱讀以下材料,然后解決問題:
①設(shè)橢圓的長半軸長為m短半軸長為b,則橢圓的面積為πab
②我們把由半橢圓C1
y2
b2
+
x2
c2
=1(x≤0)與半橢圓C2
x2
a2
+
y2
b2
=1(x≥0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0
如圖,設(shè)點F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,若△F0F1F2是邊長為1的等邊三角形,則上述“果圓”的面積為:______.

查看答案和解析>>

請閱讀以下材料,然后解決問題:
①設(shè)橢圓的長半軸長為m短半軸長為b,則橢圓的面積為πab
②我們把由半橢圓C1+=1 (x≤0)與半橢圓C2+=1 (x≥0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0
如圖,設(shè)點F,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,若△FF1F2是邊長為1的等邊三角形,則上述“果圓”的面積為:   

查看答案和解析>>

(2012•武漢模擬)如圖,已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的一個動點,滿足|F1Q|=2a.點P是線段F1Q與該橢圓的交點,點M在線段F2Q上,且滿足
PM
MF2
=0,|
MF2
|≠0.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設(shè)不過原點O的直線l與軌跡C交于A,B兩點,若直線OA,AB,OB的斜率依次成等比數(shù)列,求△OAB面積的取值范圍;
(Ⅲ)由(Ⅱ)求解的結(jié)果,試對橢圓Γ寫出類似的命題.(只需寫出類似的命題,不必說明理由)

查看答案和解析>>


同步練習(xí)冊答案