(1)解法一:不等式f(x)≤1.即≤1+ax. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

(理科做)
閱讀下面題目的解法,再根據(jù)要求解決后面的問題.
閱讀題目:對于任意實(shí)數(shù)a1,a2,b1,b2,證明不等式(a1b1+a2b22≤(a12+a22)(b12+b22).
證明:構(gòu)造函數(shù)f(x)=(a1x+b12+(a2x+b22=(a12+a22)x2+2(a1b1+a2b2)x+(b12+b22).
注意到f(x)≥0,所以△=[2(a1b1+a2b2)]2-4(a12+a22)(b12+b22)≤0,
即(a1b1+a2b22≤(a12+a22)(b12+b22).
(其中等號成立當(dāng)且僅當(dāng)a1x+b1=a2x+b2=0,即a1b2=a2b1.)
問題:(1)請用這個(gè)不等式證明:對任意正實(shí)數(shù)a,b,x,y,不等式數(shù)學(xué)公式成立.
(2)用(1)中的不等式求函數(shù)數(shù)學(xué)公式的最小值,并指出此時(shí)x的值.
(3)根據(jù)閱讀題目的證明,將不等式(a1b1+a2b22≤(a12+a22)(b12+b22)進(jìn)行推廣,得到一個(gè)更一般的不等式,并用構(gòu)造函數(shù)的方法對你的推廣進(jìn)行證明.

查看答案和解析>>

(理科做)
閱讀下面題目的解法,再根據(jù)要求解決后面的問題.
閱讀題目:對于任意實(shí)數(shù)a1,a2,b1,b2,證明不等式(a1b1+a2b22≤(a12+a22)(b12+b22).
證明:構(gòu)造函數(shù)f(x)=(a1x+b12+(a2x+b22=(a12+a22)x2+2(a1b1+a2b2)x+(b12+b22).
注意到f(x)≥0,所以△=[2(a1b1+a2b2)]2-4(a12+a22)(b12+b22)≤0,
即(a1b1+a2b22≤(a12+a22)(b12+b22).
(其中等號成立當(dāng)且僅當(dāng)a1x+b1=a2x+b2=0,即a1b2=a2b1.)
問題:(1)請用這個(gè)不等式證明:對任意正實(shí)數(shù)a,b,x,y,不等式
a2
x
+
b2
y
(a+b)2
x+y
成立.
(2)用(1)中的不等式求函數(shù)y=
2
x
+
9
1-2x
(0<x<
1
2
)
的最小值,并指出此時(shí)x的值.
(3)根據(jù)閱讀題目的證明,將不等式(a1b1+a2b22≤(a12+a22)(b12+b22)進(jìn)行推廣,得到一個(gè)更一般的不等式,并用構(gòu)造函數(shù)的方法對你的推廣進(jìn)行證明.

查看答案和解析>>


同步練習(xí)冊答案