a≤b+1f(x)≤(b+1)x-bx2≤1.即f(x)≤1. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=(
lim
n→∞
1-xn
1+xn
)•x(x≥0),下面正確表述的是( 。
A、
lim
x→1
f(x)不存在,在x=1處不連續(xù),在x=
1
2
處連續(xù)
B、在x=1處連續(xù)
C、
lim
x→1
f(x)存在,在x=1處連續(xù),在x=
1
2
處不連續(xù)
D、在x=
1
2
處不連續(xù)

查看答案和解析>>

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對(duì)于給定的正數(shù)K,定義函數(shù):fK(x)=
f(x)
1
f(x)
f(x)≤K
 
f(x)>K

取函數(shù)f(x)=a-|x|(a>1).當(dāng)K=
1
a
時(shí),函數(shù)fk(x)值域是( 。
A、[0,
1
a
]∪[1,a)
B、(0,
1
a
]∪[1,a]
C、(0,1]∪[
1
a
,a)
D、(0,
1
a
]∪[1,a)

查看答案和解析>>

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表.
x -1 0 2 4 5
f(x) 1 2 0 2 1
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)在[0,1]上是減函數(shù);
②如果當(dāng)x∈[-1,t]時(shí),f(x)最大值是2,那么t的最大值為4;
③函數(shù)y=f(x)-a有4個(gè)零點(diǎn),則1≤a<2;
④若f(x)在[-1,5]上的極小值為-2,且 y=t與f(x)有兩個(gè)交點(diǎn),則-2<t<1.
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

設(shè)f(x)是定義在[a,b]上的函數(shù),用分點(diǎn)T:a=x0<x1<…<xi-1<xi<…<xn=b,將區(qū)間[a,b]任意劃分成n個(gè)小區(qū)間,若存在常數(shù)M,使
ni=1
f(xi)-f(xi-1)|≤M恒成立,則稱(chēng)f(x)為[a,b]上的有界變差函數(shù).
(1)判斷函數(shù)f(x)=x+cosx在[-π,π]上是否為有界變差函數(shù),并說(shuō)明理由;
(2)定義在[a,b]上的單調(diào)函數(shù)f(x)是否一定為有界變差函數(shù)?若是,請(qǐng)給出證明;若不是,請(qǐng)說(shuō)明理由;
(3)若定義在[a,b]上的函數(shù)f(x)滿(mǎn)足:存在常數(shù)k,使得對(duì)于任意的x1,x2∈[a,b],|f(x1)-f(x2)|≤k|x1-x2|.證明:f(x)為[a,b]上的有界變差函數(shù).

查看答案和解析>>

精英家教網(wǎng)已知函數(shù)f(x)的定義域?yàn)閇-2,+∞),部分對(duì)應(yīng)值如下表,
 x -2    0 4
f(x)   1 -1 1
f′(x)為f(x)的導(dǎo)函數(shù),函數(shù)y=f′(x)的圖象如圖所示:若兩正數(shù)a,b滿(mǎn)足f(2a+b)<1,則
b+3
a+3
的取值范圍是(  )
A、(
6
7
,
4
3
)
B、(
3
5
,
7
3
)
C、(
2
3
6
5
)
D、(-
1
3
,3)

查看答案和解析>>


同步練習(xí)冊(cè)答案