解析:由已知(x-1)(x-3)>0. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(Ⅰ)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍;

(Ⅱ)令g(x)= f(x)-x2,是否存在實數(shù)a,當x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;

(Ⅲ)當x∈(0,e]時,證明:

【解析】本試題主要是考查了導數(shù)在研究函數(shù)中的運用。第一問中利用函數(shù)f(x)在[1,2]上是減函數(shù),的導函數(shù)恒小于等于零,然后分離參數(shù)求解得到a的取值范圍。第二問中,

假設(shè)存在實數(shù)a,使有最小值3,利用,對a分類討論,進行求解得到a的值。

第三問中,

因為,這樣利用單調(diào)性證明得到不等式成立。

解:(Ⅰ)

(Ⅱ) 

(Ⅲ)見解析

 

查看答案和解析>>

設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

(1)求正實數(shù)a的取值范圍;

(2)比較的大小,說明理由;

(3)求證:(n∈N*, n≥2)

【解析】第一問中,利用

解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

∴n≥2時:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>

(本小題滿分14分) 對函數(shù)Φx),定義fkx)=Φxmk)+nk(其中x∈(mk

mmk],kZ,m>0,n>0,且m、n為常數(shù))為Φx)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.

(1)當Φx)=2x時  ①求f0x)和fkx)的解析式;  ②求證:Φx)的各階階梯函數(shù)圖象的最高點共線;

(2)若Φx)=x2,則是否存在正整數(shù)k,使得不等式fkx)<(1-3kx+4k2+3k-1有解?若存在,求出k的值;若不存在,請說明理由.

 

查看答案和解析>>

(本小題12分)已知函數(shù)f(x)=ax3x2-2x+c,過點,且在(-2,1)內(nèi)單調(diào)遞減,在[1,上單調(diào)遞增。
(1)證明sinθ=1,并求f(x)的解析式。
(2)若對于任意的x1,x2∈[mm+3](m≥0),不等式|f(x1)-f(x2)|≤恒成立。試問這樣的m是否存在,若存在,請求出m的范圍,若不存在,說明理由。
(3)已知數(shù)列{an}中,a1,an+1f(an),求證:an+1>8·lnann∈N*)。

查看答案和解析>>

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步練習冊答案