題目列表(包括答案和解析)
已知函數(shù)y=f(x)的周期為2,當(dāng)x∈[-1,1]時f(x)=x2,那么函數(shù)y=f(x)的圖象與函數(shù)y=|lgx|的圖象的交點(diǎn)共有 ( )
A.10個 B.9個 C.8個 D.1個
設(shè)M1(0,0),M2(1,0),以M1為圓心,| M1 M2 | 為半徑作圓交x軸于點(diǎn)M3 (不同于M2),記作⊙M1; 以M2為圓心,| M2 M3 | 為半徑作圓交x軸于點(diǎn)M4 (不同于M3),記作⊙M2;……;以Mn為圓心,| Mn Mn+1 | 為半徑作圓交x軸于點(diǎn)Mn+2 (不同于Mn+1),記作⊙Mn;……當(dāng)n∈N*時,過原點(diǎn)作傾斜角為30°的直線與⊙Mn交于An,Bn.考察下列論斷:
當(dāng)n=1時,| A1B1 |=2; 當(dāng)n=2時,| A2B2 |=;
當(dāng)n=3時,| A3B3 |=;當(dāng)n=4時,| A4B4 |=;
……
由以上論斷推測一個一般的結(jié)論:對于n∈N*,| AnBn |= ▲ .
已知函數(shù)y= f (x) 的周期為2,當(dāng)x時,f (x)= x 2,那么函數(shù)y = f (x) 的圖像與函數(shù)y =的圖像的交點(diǎn)共有( )
A.10個 B.9個 C.8個 D.1個
仔細(xì)閱讀下面問題的解法:
設(shè)A=[0, 1],若不等式21-x-a>0在A上有解,求實(shí)數(shù)a的取值范圍。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上單調(diào)遞減,f(x)max =f(0)=2. ∴實(shí)數(shù)a的取值范圍為a<2.
研究學(xué)習(xí)以上問題的解法,請解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對于(1)中的A,設(shè)g(x)=,x∈A,試判斷g(x)的單調(diào)性(寫明理由,不必證明);
(3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實(shí)數(shù)a的取值范圍。
仔細(xì)閱讀下面問題的解法:
設(shè)A=[0,1],若不等式21-x+a>0在A上有解,求實(shí)數(shù)a的取值范圍.
解:令f(x)=21-x+a,因?yàn)閒(x)>0在A上有解。
=2+a>0a>-2
學(xué)習(xí)以上問題的解法,解決下面的問題,已知:函數(shù)f(x)=x2+2x+3(-2≤x≤-1).
①求f(x)的反函數(shù)f-1(x)及反函數(shù)的定義域A;
②設(shè)B=,若A∩B≠,求實(shí)數(shù)a的取值范圍.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com