(Ⅱ)∵a1+a2+-+am=ma1+=-393m+3m(m-1).∴am+1+am+2+-+a2m=(a1+a2+-+a2m)-(a1+a2+-+am)=-393×(2m)+6m(2m-1)+393m-3m(m-1)=9m2-396m.∵-160b2=-288.∴9m2-396m≤-288(m+1).m2-44m≤-32(m+1).即(m-4)(m-8)≤0.解得4≤m≤8. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=x+
t
x
(t>0)
,過點P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點分別為M,N.
(1)當t=2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)|MN|=g(t),試求函數(shù)g(t)的表達式;
(3)在(2)的條件下,若對任意的正整數(shù)n,在區(qū)間[2,n+
64
n
]
內(nèi),總存在m+1個數(shù)a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

數(shù)列{an}的前m項為a1,a2,…,am(m∈N*),若對任意正整數(shù)n,有an+m=anq(其中q為常數(shù),q≠0且q≠1),則稱數(shù)列{an}是以m為周期,以q為周期公比的似周期性等比數(shù)列.已知似周期性等比數(shù)列{bn}的前5項為1,1,1,1,2,周期為5,周期公比為3,則數(shù)列{bn}前5k+1項的和等于
4•3k-3
4•3k-3
.(k為正整數(shù))

查看答案和解析>>

已知函數(shù)f(x)=x+
t
x
(t>0)
和點P(1,0),過點P作曲線y=f(x)的兩條切線PM、PN,切點分別為M、N.
(Ⅰ)設(shè)|MN|=g(t),試求函數(shù)g(t)的表達式;
(Ⅱ)是否存在t,使得M、N與A(0,1)三點共線.若存在,求出t的值;若不存在,請說明理由.
(Ⅲ)在(Ⅰ)的條件下,若對任意的正整數(shù)n,在區(qū)間[2,n+
64
n
]
內(nèi)總存在m+1個實數(shù)a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

數(shù)列An的前m項為A1,A2,…,Am,若對任意正整數(shù)n,有A(n+m)=An•q(其中q為常數(shù),q不等于0,1),則稱數(shù)列An是以m為周期,以q為周期公比的似周期性等比數(shù)列.已知似周期性等比數(shù)列Bn的前7項為1,1,1,1,1,1,2,周期為7,周期公比為3,則數(shù)列Bn前7k+1項的和
 
.(k為正整數(shù)).

查看答案和解析>>

18、對于給定的自然數(shù)n,如果數(shù)列a1,a2,…,am(m>n)滿足:1,2,3,…,n的任意一個排列都可以在原數(shù)列中刪去若干項后的數(shù)列原來順序排列而得到,則稱a1,a2,…,am(m>n)是“n的覆蓋列”.如1,2,1是“2的覆蓋數(shù)列”;1,2,2則不是“2的覆蓋數(shù)列”,因為刪去任何數(shù)都無法得到排列2,1,則以下四組數(shù)列中是“3的覆蓋數(shù)列”為(  )

查看答案和解析>>


同步練習(xí)冊答案