解得x0=1.x0=. 查看更多

 

題目列表(包括答案和解析)

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班48人進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:

 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
 
6
 
女生
10
 
 
合計(jì)
 
 
48
已知在全班48人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為.
(1)請(qǐng)將上面的2×2列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程);
(2)你是否有95%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
下面的臨界值表供參考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班48人進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:

 

喜愛打籃球

不喜愛打籃球

合計(jì)

男生

 

6

 

女生

10

 

 

合計(jì)

 

 

48

已知在全班48人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為.

(1)請(qǐng)將上面的2×2列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程)

(2)你是否有95%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;

(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

下面的臨界值表供參考:

P(χ2x0)

P(K2k0)

0.10

0.05

0.010

0.005

x0(k0)

2.706

3.841

6.635

7.879

 

(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

 

查看答案和解析>>

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班48人進(jìn)行了問卷調(diào)查得到了如下的2×2列聯(lián)表:
 
喜愛打籃球
不喜愛打籃球
合計(jì)
男生
 
6
 
女生
10
 
 
合計(jì)
 
 
48
已知在全班48人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為.
(1)請(qǐng)將上面的2×2列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程);
(2)你是否有95%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
下面的臨界值表供參考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

已知函數(shù)f(x)=ax(x-c)2在x=x0處取得極大值32,其導(dǎo)函數(shù)y=(x)的圖象經(jīng)過點(diǎn)(2,0),(6,0),如下圖.求:

(1)x0的值;

(2)函數(shù)f(x)的解析式.

查看答案和解析>>

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期為π,圖像的一個(gè)對(duì)稱中心為,將函數(shù)f(x)圖像上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍(縱坐標(biāo)不變),在將所得圖像向右平移個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖像.

(1)求函數(shù)f(x)與g(x)的解析式;

(2)是否存在,使得f(x0),g(x0),f(x0)g(x0)按照某種順序成等差數(shù)列?若存在,請(qǐng)確定x0的個(gè)數(shù);

若不存在,說明理由.

(3)求實(shí)數(shù)a與正整數(shù)n,使得F(x)=f(x)+ag(x)在(0,nπ)內(nèi)恰有2013個(gè)零點(diǎn).

查看答案和解析>>


同步練習(xí)冊(cè)答案