※41.(Ⅰ)解:第1位職工的獎金a1=. 查看更多

 

題目列表(包括答案和解析)

某公司全年的純利潤為b元,其中一部分作為獎金發(fā)給n位職工,獎金分配方案如下:首先將職工按工作業(yè)績(工作業(yè)績均不相同)從大到小,由1到n排序,第1位職工得獎金
b
n
元,然后將余額除以n發(fā)給第2位職工,按此方案將獎金逐一發(fā)給每位職工,并將最后剩余部分作為公司發(fā)展基金.
(1)設(shè)ak(1≤k≤n)為第k位職工所得獎金額,試求a2、a3,并用k、n和b表示ak(不必證明);
(2)證明:ak>ak+1(k=1,2,…,n-1),并解釋此不等式關(guān)于分配原則的實際意義;
(3)發(fā)展基金與n和b有關(guān),記為Pn(b).對常數(shù)b,當(dāng)n變化時,求
lim
n→∞
Pn(b)(可用公式
lim
n→∞
(1-
1
n
n=
1
e
).

查看答案和解析>>

某公司全年的純利潤為b元,其中一部分作為獎金發(fā)給n位職工,獎金分配方案如下:首先將職工按工作業(yè)績(工作業(yè)績均不相同)從大到小,由1到n排序,第1位職工得獎金
b
n
元,然后將余額除以n發(fā)給第2位職工,按此方案將獎金逐一發(fā)給每位職工,并將最后剩余部分作為公司發(fā)展基金.
(1)設(shè)ak(1≤k≤n)為第k位職工所得獎金額,試求a2、a3,并用k、n和b表示ak(不必證明);
(2)證明:ak>ak+1(k=1,2,…,n-1),并解釋此不等式關(guān)于分配原則的實際意義;
(3)發(fā)展基金與n和b有關(guān),記為Pn(b).對常數(shù)b,當(dāng)n變化時,求
lim
n→∞
Pn(b)(可用公式
lim
n→∞
(1-
1
n
n=
1
e
).

查看答案和解析>>

某公司全年的利潤為b元,其中一部分作為獎金發(fā)給n位職工,獎金分配方案如下:首先將職工按工作業(yè)績(工作業(yè)績均不相同)從大到小,由1到n排序,第1位職工得獎金元,然后再將余額除以n發(fā)給第2位職工,按此方法將獎金逐一發(fā)給每位職工,并將最后剩余部分作為公司發(fā)展基金.

(1)設(shè)ak(1≤kn)為第k位職工所得獎金金額,試求a2,a3,并用k、nb表示ak(不必證明);

(2)證明akak+1(k=1,2,…,n-1),并解釋此不等式關(guān)于分配原則的實際意義;

(3)發(fā)展基金與nb有關(guān),記為Pn(b),對常數(shù)b,當(dāng)n變化時,求Pn(b).

查看答案和解析>>

某公司全年的純利潤為b元,其中一部分作為獎金發(fā)給n位職工,獎金分配方案如下:首先將職工按工作業(yè)績(工作業(yè)績均不相同)從大到小,由1到n排序,第1位職工得獎金元,然后將余額除以n發(fā)給第2位職工,按此方案將獎金逐一發(fā)給每位職工,并將最后剩余部分作為公司發(fā)展基金.
(1)設(shè)ak(1≤k≤n)為第k位職工所得獎金額,試求a2、a3,并用k、n和b表示ak(不必證明);
(2)證明:ak>ak+1(k=1,2,…,n-1),并解釋此不等式關(guān)于分配原則的實際意義;
(3)發(fā)展基金與n和b有關(guān),記為Pn(b).對常數(shù)b,當(dāng)n變化時,求Pn(b)(可用公式(1-n=).

查看答案和解析>>

21.某公司全年的純利潤為b元,其中一部分作為獎金發(fā)給n位職工.獎金分配方案如下:首先將職工按工作業(yè)績(工作業(yè)績均不相同)從大到小.由1至n排序,第1位職工得獎金元,然后再將余額除以n發(fā)給第2位職工,按此方法將獎金逐一發(fā)給每位職工.并將最后剩余部分作為公司發(fā)展基金.

 

(1)設(shè)ak(1≤kn)為第k位職工所得獎金額,試求a2a3,并用k、nb表示ak ;(不必證明)

 

(2)證明a ka k1(k=1,2,…,n-1),并解釋此不等式關(guān)于分配原則的實際意義;

 

(3)發(fā)展基金與nb有關(guān),記為Pnb).對常數(shù)b,當(dāng)n變化時,求Pnb).

查看答案和解析>>


同步練習(xí)冊答案